978 resultados para Trace-element Analysis
Resumo:
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Resumo:
The middle Miocene Climatic Optimum (17-15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal d11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle Miocene (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (~1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350-400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200-260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere.
Trace element abundance, and Sr and Nd isotope ratios of dust samples in the Pacific Ocean (Table 2)
Resumo:
Eolian dust preserved in deep-sea sediment cores provides a valuable indicator of past atmospheric circulation and continental paleoclimate. In order to identify the provenance of eolian dust, Nd and Sr isotopic compositions and Rb, Sr and rare earth element (REE) concentrations have been determined for the silicate fractions of deep-sea sediments from the north and central Pacific Ocean. Different regions of the Pacific Ocean are characterized by distinct air-borne inputs, producing a large range in epsolin-Nd (-10 to +1), 87Sr/86Sr (0.705-0.721), La/Yb (5-15), EuN/EuN* (0.6-1.0) and Sr/Nd (4-33). The average Nd isotopic composition of Pacific deep-sea sediments (epsilon-Nd = -6), is more radiogenic than the average from the Atlantic (epsilon-Nd = -8). In contrast, the average147Sm/144Nd ratio for Pacific sediments (0.114) is identical to that of Atlantic sediments and to that of global average riverine suspended material. The values of epsilon-Nd and147Sm/144Nd are positively correlated for the Pacific samples but negatively correlated for Atlantic samples, reflecting a fundamental difference between the dominant components in the end members with radiogenic Nd (island-arc components in the Pacific and LREE-enriched intraplate ocean island components in the Atlantic). Samples from the north central Pacific have distinctive unradiogenic epsilon-Nd values of -10, 87Sr/86Sr > 0.715, high La/Yb (> 12), and low EuN/EuN* (0.6) and Sr/Nd (3-6). These data are virtually identical to the values for loess from Asia and endorse the use of these sediments as indicators of Asian paleoclimate and paleowind directions. Island-arc contributions appear to dominate in the northwest Pacific, resulting in higher epsilon Nd (-1 to +1) and lower 87Sr/86Sr (~ 0.705) and La/Yb (~ 5). Sediments from the eastern Pacific tend to have intermediate Sr and Nd isotopic compositions but regionally variable Sr/Nd and REE patterns; they appear to be derived from the west margin of the North and South American continents, rather than from Asia. Our results confirm that dust provenance can be constrained by isotopic and geochemical analyses, which will facilitate reconstructions of past atmospheric circulation and continental paleoclimate.