994 resultados para Toxicology.
Resumo:
According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.
Resumo:
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.
Resumo:
Many studies based on either an experimental or an epidemiological approach, have shown that the ability to drive is impaired when the driver is under the influence of cannabis. Baseline performances of heavy users remain impaired even after several weeks of abstinence. Symptoms of cannabis abuse and dependence are generally considered incompatible with safe driving. Recently, it has been shown that traffic safety can be increased by reporting the long-term unfit drivers to the driver licensing authorities and referring the cases for further medical assessment. Evaluation of the frequency of cannabis use is a prerequisite for a reliable medical assessment of the fitness to drive. In a previous paper we advocated the use of two thresholds based on 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) concentration in whole blood to help to distinguish occasional cannabis users (≤3μg/L) from heavy regular smokers (≥40μg/L). These criteria were established on the basis of results obtained in a controlled cannabis smoking study with placebo, carried out with two groups of young male volunteers; the first group was characterized by a heavy use (≥10 joints/month) while the second group was made up of occasional users smoking at most 1 joint/week. However, to date, these cutoffs have not been adequately assessed under real conditions. Their validity can now be evaluated and confirmed with 146 traffic offenders' real cases in which the whole blood cannabinoid concentrations and the frequency of cannabis use are known. The two thresholds were not challenged by the presence of ethanol (40% of cases) and of other therapeutic and illegal drugs (24%). Thus, we propose the following procedure that can be very useful in the Swiss context but also in other countries with similar traffic policies: if the whole blood THCCOOH concentration is higher than 40μg/L, traffic offenders must be directed first and foremost toward medical assessment of their fitness to drive. This evaluation is not recommended if the THCCOOH concentration is lower than 3μg/L and if the self-rated frequency of cannabis use is less than 1 time/week. A THCCOOH level between these two thresholds cannot be reliably interpreted. In such a case, further medical assessment and follow-up of the fitness to drive are also suggested, but with lower priority.
Resumo:
Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.
Resumo:
The aim of this study was to evaluate adverse effects of multiwalled carbon nanotubes (MWCNT), produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in two other media: ethanol (EtOH) and phosphate-buffered saline (PBS). Effects of MWCNT were also compared to those of two asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells but also in mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15-35 μm2) that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress was observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability, and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. [Authors]
Resumo:
Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility.
Resumo:
This article extends existing discussion in literature on probabilistic inference and decision making with respect to continuous hypotheses that are prevalent in forensic toxicology. As a main aim, this research investigates the properties of a widely followed approach for quantifying the level of toxic substances in blood samples, and to compare this procedure with a Bayesian probabilistic approach. As an example, attention is confined to the presence of toxic substances, such as THC, in blood from car drivers. In this context, the interpretation of results from laboratory analyses needs to take into account legal requirements for establishing the 'presence' of target substances in blood. In a first part, the performance of the proposed Bayesian model for the estimation of an unknown parameter (here, the amount of a toxic substance) is illustrated and compared with the currently used method. The model is then used in a second part to approach-in a rational way-the decision component of the problem, that is judicial questions of the kind 'Is the quantity of THC measured in the blood over the legal threshold of 1.5 μg/l?'. This is pointed out through a practical example.
Resumo:
Chronic inhalation of grain dust is associated with asthma and chronic bronchitis in grain worker populations. Exposure to fungal particles was postulated to be an important etiologic agent of these pathologies. Fusarium species frequently colonize grain and straw and produce a wide array of mycotoxins that impact human health, necessitating an evaluation of risk exposure by inhalation of Fusarium and its consequences on immune responses. Data showed that Fusarium culmorum is a frequent constituent of aerosols sampled during wheat harvesting in the Vaud region of Switzerland. The aim of this study was to examine cytokine/chemokine responses and innate immune sensing of F. culmorum in bone-marrow-derived dendritic cells and macrophages. Overall, dendritic cells and macrophages responded to F. culmorum spores but not to its secreted components (i.e., mycotoxins) by releasing large amounts of macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, monocyte chemoattractant protein (MCP)-1, RANTES, and interleukin (IL)-12p40, intermediate amounts of tumor necrosis factor (TNF), IL-6, IL-12p70, IL-33, granulocyte colony-stimulating factor (G-CSF), and interferon gamma-induced protein (IP-10), but no detectable amounts of IL-4 and IL-10, a pattern of mediators compatible with generation of Th1 or Th17 antifungal protective immune responses rather than with Th2-dependent allergic responses. The sensing of F. culmorum spores by dendritic cells required dectin-1, the main pattern recognition receptor involved in β-glucans detection, but likely not MyD88 and TRIF-dependent Toll-like receptors. Taken together, our results indicate that F. culmorum stimulates potently innate immune cells in a dectin-1-dependent manner, suggesting that inhalation of F. culmorum from grain dust may promote immune-related airway diseases in exposed worker populations.
Resumo:
A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.
Resumo:
Sediment samples were taken from seven locations in the
WeIland River in December 1986 and April 1987. The DMSO extracts
of these sediment samples showed a significant (p
Resumo:
Although it is widely assumed that temperature affects pollutant toxicity, few studies have actually investigated this relationship. Moreover, such research as has been done has involved constant temperatures; circumstances which are rarely, if ever, actually experienced by north temperate, littoral zone cyprinid species. To investigate the effects of temperature regime on nickel toxicity in goldfish (Carassius auratus L.), 96- and 240-h LCSO values for the heavy metal pollutant, nickel (NiCI2.6H20), were initially determined at 2DoC (22.8 mg/L and 14.7 mg/L in artificially softened water). Constant temperature bioassays at 10°C, 20°C and 30°C were conducted at each of 0, 240-h and 96-h LCSO nickel concentrations for 240 hours. In order to determine the effects of temperature variation during nickel exposure it was imperative that the effects of a single temperature change be investigated before addressing more complex regimes. Single temperature changes of + 10°C or -10°C were imposed at rates of 2°C/h following exposures of between 24 hand 216 h. The effects of a single temperature change on mortality, and duration of toxicant exposure at high and low temperatures were evaluated. The effects of fluctuating temperatures during exposure were investigated through two regimes. The first set of bioassays imposed a sinewave diurnal cycle temperature (20.±.1DOC) throughout the 10 day exposure to 240-h LeSO Ni. The second set of investigations approximated cyprinid movement through the littoral zone by imposing directionally random temperature changes (±2°C at 2-h intervals), between extremes of 10° and 30°C, at 240-h LC50 Ni. Body size (i.e., total length, fork length, and weight) and exposure time were recorded for all fish mortalities. Cumulative mortality curves under constant temperature regimes indicated significantly higher mortality as temperature and nickel concentration were increased. At 1DOC no significant differences in mortality curves were evident in relation to low and high nickel test concentrations (Le., 16 mg/L and 20 mg/L). However at 20°C and 30°C significantly higher mortality was experienced in animals exposed to 20 mg/L Ni. Mortality at constant 10°C was significantly lower than at 30°C with 16 mg/L and was significantly loWer than each of 2DoC and 39°C tanks at 20 mg/L Ni exposure. A single temperature shift from 20°C to 1DoC resulted in a significant decrease in mortality rate and conversely, a single temperature shift from 20°C to 30°C resulted in a significant increase in mortality rate. Rates of mortality recorded during these single temperature shift assays were significantly different from mortality rates obtained under constant temperature assay conditions. Increased Ni exposure duration at higher temperatures resulted in highest mortality. Diurnally cycling temperature bioassays produced cumulative mortality curves approximating constant 20°C curves, with increased mortality evident after peaks in the temperature cycle. Randomly fluctuating temperature regime mortality curves also resembled constant 20°C tanks with mortalities after high temperature exposures (25°C - 30°C). Some test animals survived in all assays with the exception of the 30°C assays, with highest survival associated with low temperature and low Ni concentration. Post-exposure mortality occurred most frequently in individuals which had experienced high Ni concentrations and high temperatures during assays. Additional temperature stress imposed 2 - 12 weeks post exposure resulted in a single death out of 116 individuals suggesting that survivors are capable of surviving subsequent temperature stresses. These investigations suggest that temperature significantly and markedly affects acute nickel toxicity under both constant and fluctuating temperature regimes and plays a role in post exposure mortality and subsequent stress response.
Resumo:
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8–12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume the mother’s diet. Body and organ weights and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d of ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo. of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower numbers of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five- and 10-d exposure to ISO had similar long-lasting adverse effects on the structures of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.
Resumo:
La spécialisation des techniques agricoles que nous connaissons ces dernières décennies, particulièrement dans les régions rurales, est à l’origine de l’abus de fertilisants. Ces derniers sont actuellement reconnus comme étant les causes principales de la contamination de l’eau souterraine par les nitrates. Suite à leur ingestion via l’eau potable, les nitrates sont transformés en nitrites par la flore buccale. Une fois dans l’estomac les nitrites réagissent avec certaines amines provenant de l’alimentation pour générer des nitrosamines cancérogènes. L’objectif de notre étude était d’estimer quantitativement l’excès de risque de cancer (ER) pour les populations de sept régions rurales du Québec qui consomme l’eau potable provenant de réseaux municipaux alimentés en eau souterraine. Le territoire à l’étude était caractérisé par une agriculture intensive d’élevage. Les médianes (et 95e centiles) régionales des concentrations de nitrates mesurées dans les réseaux de ces régions étaient de : 0,18 (2,74); 0,48 (10,35); 0,15 (1,28); 0,32 (11); 0,05 (0,76); 0,10 (4,69); 0,09 (2,13) mg N-NO3-/l. Nous avons envisagé un scénario de transformation complète des nitrites et de certaines amines (diméthylamine, diéthylamine, n-butylamine, méthyléthylamine) en nitrosamines spécifiques : N-diméthylnitrosamine (NDMA), N-diéthylnitrosamine (NDEA), N-n-dibutylnitrosamine (NDBA) et N-méthyléthylnitrosamine (NMEA). Pour estimer la concentration de nitrites formés dans l’estomac, nous avons considéré une consommation définie d’eau potable, le volume de l’estomac et un taux de transformation des nitrates en nitrites. Supposant les quantités de nitrites et de chaque amine constantes pendant 1h, nous avons considéré la constante de nitrosation spécifique à chaque amine pour évaluer la dose d’exposition journalière à chaque nitrosamine équivalente formée. Par la suite, la combinaison de cette dose à un estimateur de potentiel cancérogène qhumain spécifique à chaque nitrosamine, nous a permis d’évaluer l’ER associé à chacune d’elles. Globalement l’analyse a démontré que les ER les plus élevés, estimés pour le NDBA, étaient de l’ordre de 10-6, ne contribuant pas de façon significative à une augmentation du risque de cancer pour ces populations.
Resumo:
La contribution de l’inhalation et de la voie percutanée à l’exposition totale à des composés organiques volatils (COV) présents dans l’eau potable est une problématique qui suscite un intérêt grandissant en santé publique et au niveau réglementaire. Jusqu’à tout récemment, seule l’ingestion était considérée dans l’évaluation du risque des contaminants de l’eau. L’objectif de ce projet était de caractériser l’impact de l’exposition multivoie sur la pharmacocinétique et la dose interne de trois COV : le toluène (TOL), le n-hexane (HEX) et le cyclohexane (CYCLO). À cette fin, un modèle expérimental animal a été utilisé et un modèle toxicocinétique à base physiologique (TCBP) a été adapté pour le TOL. Des rats Sprague-Dawley ont été exposés par voies uniques (inhalation, orale et percutanée) ou simultanées (multivoie) aux solvants. Pour le TOL, les trois voies ont été expérimentées, alors que la voie percutanée n’a pas été retenue pour le HEX et le CYCLO. Des prélèvements sanguins ont permis de caractériser les cinétiques sanguines. Les niveaux sanguins, obtenus lors des expositions multivoies, étaient généralement plus élevés que la somme des niveaux associés aux expositions par voies uniques, fait illustré par le rapport des surfaces sous la courbe expérimentale versus les prédictions (TOL : 1,30 et 2,19 ; HEX : 1,55 ; CYCLO : 0,98 et 0,99). Le modèle TCBP prédit bien la cinétique du TOL lors d’expositions par voies uniques et par multivoies. Les données expérimentales obtenues suggèrent que la dose interne résultant d’une exposition multivoie ne peut pas toujours être prédite par la somme des doses internes obtenues lors d’expositions par voies uniques. Ce phénomène serait explicable par la saturation du métabolisme. La modélisation TCBP est un outil efficace pour l’estimation du risque relatif à l’exposition multivoie aux COV présents dans l’eau potable.