968 resultados para Topological entropy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-speed evaluation of a large number of linear, quadratic, and cubic expressions is very important for the modeling and real-time display of objects in computer graphics. Using VLSI techniques, chips called pixel planes have actually been built by H. Fuchs and his group to evaluate linear expressions. In this paper, we describe a topological variant of Fuchs' pixel planes which can evaluate linear, quadratic, cubic, and higher-order polynomials. In our design, we make use of local interconnections only, i.e., interconnections between neighboring processing cells. This leads to the concept of tiling the processing cells for VLSI implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma (GBM; grade IV astrocytoma) is a very aggressive form of brain cancer with a poor survival and few qualified predictive markers. This study integrates experimentally validated genes that showed specific upregulation in GBM along with their protein-protein interaction information. A system level analysis was used to construct GBM-specific network. Computation of topological parameters of networks showed scale-free pattern and hierarchical organization. From the large network involving 1,447 proteins, we synthesized subnetworks and annotated them with highly enriched biological processes. A careful dissection of the functional modules, important nodes, and their connections identified two novel intermediary molecules CSK21 and protein phosphatase 1 alpha (PP1A) connecting the two subnetworks CDC2-PTEN-TOP2A-CAV1-P53 and CDC2-CAV1-RB-P53-PTEN, respectively. Real-time quantitative reverse transcription-PCR analysis revealed CSK21 to be moderately upregulated and PP1A to be overexpressed by 20-fold in GBM tumor samples. Immunohistochemical staining revealed nuclear expression of PP1A only in GBM samples. Thus, CSK21 and PP1A, whose functions are intimately associated with cell cycle regulation, might play key role in gliomagenesis. Cancer Res; 70(16); 6437-47. (C)2010 AACR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel system for recognition of handprinted alphanumeric characters has been developed and tested. The system can be employed for recognition of either the alphabet or the numeral by contextually switching on to the corresponding branch of the recognition algorithm. The two major components of the system are the multistage feature extractor and the decision logic tree-type catagorizer. The importance of ldquogoodrdquo features over sophistication in the classification procedures was recognized, and the feature extractor is designed to extract features based on a variety of topological, morphological and similar properties. An information feedback path is provided between the decision logic and the feature extractor units to facilitate an interleaved or recursive mode of operation. This ensures that only those features essential to the recognition of a particular sample are extracted each time. Test implementation has demonstrated the reliability of the system in recognizing a variety of handprinted alphanumeric characters with close to 100% accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligonucleotides containing alternating purines-pyrimidines with AT base pairs have been shown to exist in the Z-form preferably in solid state. We report that oligodeoxyribonucleotides with GG, TG and CA interruptions in their alternating CG sequences can undergo B to Z transition in solution in the absence of any chemical modification or topological constraint. The sequences, d(CGCGCGGCGCGC) and d(CGTGCGCACG) have been synthesised and shown to adopt Z- conformation in presence of millimolar concentrations of Ni2+ under low water activity conditions. Significance of GG, TG and CA interruptions in the B to Z transition is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a theory of multichannel disordered conductors by directly studying the statistical distribution of the transfer matrix for the full system. The theory is based on the general properties of the scattering system: flux conservation, time-reversal invariance, and the appropriate combination requirement when two wires are put together. The distribution associated with systems of very small length is then selected on the basis of a maximum-entropy criterion; a fixed value is assumed for the diffusion coefficient that characterizes the evolution of the distribution as the length increases. We obtain a diffusion equation for the probability distribution and compute the average of a few relevant quantities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the elasticity, topological defects, and hydrodynamics of the recently discovered incommensurate smectic (AIC) phase, characterized by two collinear mass density waves of incommensurate spatial frequency. The low-energy long-wavelength excitations of the system can be described by a displacement field u(x) and a ��phason�� field w(x) associated, respectively, with collective and relative motion of the two constituent density waves. We formulate the elastic free energy in terms of these two variables and find that when w=0, its functional dependence on u is identical to that of a conventional smectic liquid crystal, while when u=0, its functional dependence on w is the same as that for the angle variable in a slightly anisotropic XY model. An arbitrariness in the definition of u and w allows a choice that eliminates all relevant couplings between them in the long-wavelength elastic energy. The topological defects of the system are dislocations with nonzero u and w components. We introduce a two-dimensional Burgers lattice for these dislocations, and compute the interaction between them. This has two parts: one arising from the u field that is short ranged and identical to the interaction between dislocations in an ordinary smectic liquid crystal, and one arising from the w field that is long ranged and identical to the logarithmic interaction between vortices in an XY model. The hydrodynamic modes of the AIC include first- and second-sound modes whose direction-dependent velocities are identical to those in ordinary smectics. The sound attenuations have a different direction dependence, however. The breakdown of hydrodynamics found in conventional smectic liquid crystals, with three of the five viscosities diverging as 1/? at small frequencies ?, occurs in these systems as well and is identical in all its details. In addition, there is a diffusive phason mode, not found in ordinary smectic liquid crystals, that leads to anomalously slow mechanical response analogous to that predicted in quasicrystals, but on a far more experimentally accessible time scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of an electrophoretically homogeneous rabbit penicillin carrier receptor protein (CRP) and rabbit antipenicillin antibody afforded an idealin vitro system to calculate the thermodynamic parameters of the binding of14C benzyl penicillin CRP conjugate (antigen) to the purified rabbit antipenicillin antibody. The thermodynamic parameters of this antigen-antibody reaction has been studied by radio-active assay method by using millipore filter. Equilibrium constant (K) of this reaction has been found to be 2·853×109M−2 and corresponding free energy (ΔG) at 4°C and 37°C has been calculated to be −12·02 and −13·5 kcal/mole, enthalpy (ΔH) and entropy (ΔS) has been found to be 361 kcal/mole and +30 eu/mole respectively. Competitive binding studies of CRP-analogue conjugates with the divalent rabbit antibody has been carried out in the presence of14C-penicilloyl CRP. It was found that 7-deoxy penicillin-CRP complex and 6-amino penicilloyl CRP conjugate binds to the antibody with energies stronger than that with the14C-penicilloyl CRP. All the other analogue conjugates are much weaker in interfering with the binding of the penicilloyl CRP with the antibody. The conjugate of methicillin,o-nitro benzyl penicillin and ticarcillin with CRP do not materially interfere in the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermodynamics of Cr-Mn alloys have been studied by Eremenko et al (l) using a fused salt e.m.f.technique. Their results indicate positive deviations from ideality at 1023 K. Kaufman (2) has independently estimated negative enthaipy and excess entropy for the b.c.c. Cr-Mn alloys, such that at high temperatures, the entropy term predominates over the enthalpy term giving positive deviations from ideality. Recently the thermodynamic properties of the alloys have been measured by 3acob (3) using a Knudsen cell technique in the temperature range of 1200 to 1500 K. The results indicate mild negative deviations from ideality over the entire composition range. Because of the differences in the reported results and Mn being a volatile component in the alloys which leads to surface depletion under a dynamic set up, an isopiestic technique is used to measure the properties of the alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs' energy change for the reaction, 3CoO (r.s.)+1/2O2(g)→Co3O4(sp), has been measured between 730 and 1250 K using a solid state galvanic cell: Pt, CuO+Cu2O|(CaO)ZrO2|CoO+Co3O4,Pt. The emf of this cell varies nonlinearly with temperature between 1075 and 1150 K, indicating a second or higher order phase transition in Co3O4around 1120 (±20) K, associated with an entropy change of ∼43 Jmol-1K-1. The phase transition is accompanied by an anomalous increase in lattice parameter and electrical conductivity. The cubic spinel structure is retained during the transition, which is caused by the change in CO+3 ions from low spin to high spin state. The octahedral site preference energy of CO+3 ion in the high spin state has been evaluated as -24.8 kJ mol-1. This is more positive than the value for CO+2 ion (-32.9 kJ mol-1). The cation distribution therefore changes from normal to inverse side during the phase transition. The transformation is unique, coupling spin unpairing in CO+3 ion with cation rearrangement on the spinel lattice, DTA in pure oxygen revealed a small peak corresponding to the transition, which could be differentiated from the large peak due to decomposition. TGA showed that the stoichiometry of oxide is not significantly altered during the transition. The Gibbs' energy of formation of Co3O4 from CoO and O2 below and above phase transition can be represented by the equations:ΔG0=-205,685+170.79T(±200) J mol-1(730-1080 K) and ΔG0=-157,235+127.53T(±200) J mol-1(1150-1250 K).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700�1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the structural behavior and thermodynamics of the complexation of siRNA with poly(amidoamine) (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) through fully atomistic molecular dynamics (MD) simulations accompanied by free energy calculations and inherent structure determination. We have also done simulation with one siRNA and two dendrimers (2 x G3 or 2xG4) to get the microscopic picture of various binding modes. Our simulation results reveal the formation of stable siRNA-dendrimer complex over nanosecond time scale. With the increase in dendrimcr generation, the charge ratio increases and hence the binding energy between siRNA and dendrimer also increases in accordance with available experimental measurements. Calculated radial distribution functions of amines groups of various subgenerations in a given generation of dendrimer and phosphate in backbone of siRNA reveals that one dendrimer of generation 4 shows better binding with siRNA almost wrapping the dendrimer when compared to the binding with lower generation dendrimer like G3. In contrast, two dendrimers of generation 4 show binding without siRNA wrapping the den-rimer because of repulsion between two dendrimers. The counterion distribution around the complex and the water molecules in the hydration shell of siRNA give microscopic picture of the binding dynamics. We see a clear correlation between water. counterions motions and the complexation i.e. the water molecules and counterions which condensed around siRNA are moved away from the siRNA backbone when dendrimer start binding to the siRNA back hone. As siRNA wraps/bind to the dendrimer counterions originally condensed onto siRNA (Na-1) and dendrimer (Cl-) get released. We give a quantitative estimate of the entropy of counterions and show that there is gain in entropy due to counterions release during the complexation. Furthermore, the free energy of complexation of IG3 and IG4 at two different salt concentrations shows that increase in salt concentration leads to the weakening of the binding affinity of siRNA and dendrimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.