913 resultados para Timing
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We specifically consider the scenario when the channel between the primary and a secondary user is frequency selective. We develop cooperative sequential detection algorithms based on energy detectors. We modify the detectors to mitigate the effects of some common model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. The performance of the proposed algorithms are studied via simulations. We show that the performance of the energy detector is not affected by the frequency selective channel. We also provide a theoretical analysis for some of our algorithms.
Resumo:
Chorionic gonadotrophin (CG) is the first clear embryonic signal during early pregnancy in primates. CG has close structural and functional similarities to pituitary luteinizing hormone (LH) which is regulated by gonadotrophin releasing hormone (GnRH). To study the regulatory mechanism of CG secretion in primate embryos, we examined the production and timing of secretion of GnRH in peri-implantation embryos of the rhesus monkey. In-vivo fertilized/developed morulae and early blastocysts, recovered from non-superovulated, naturally-bred rhesus monkeys by non-surgical uterine flushing, were cultured in vitro to hatched, attached and post-attached blastocyst stages using a well-established culture system. We measured GnRH and CG in media samples from cultured embryos with a sensitive radioimmunoassay and bioassay, respectively. The secretion of GnRH (pg/ml; mean +/- SEM) by embryos (n = 20) commenced from low levels (0.32 +/- 0.05) during the pre-hatching blastocyst stage to 0.70 +/- 0.08 at 6-12 days and 1.30 +/- 0.23 at greater than or equal to 13 days of hatched blastocyst attachment and proliferation of trophoblast cells. GnRH concentrations in culture media obtained from embryos (n = 5) that failed to hatch and attach were mostly undetectable (less than or equal to 0.1). Samples that did not contain detectable GnRH failed to show detectable CG. Immunocytochemical studies, using a specific monoclonal anti-GnRH antibody (HU4H) as well as polyclonal antisera (LR-1), revealed that immunopositive GnRH cells were localized in pre-hatching blastocysts (n = 4), in blastocysts (n = 2) after 5-10 days of attachment and in monolayer cultures (n = 4) of well-established embryonic trophoblast cells. GnRH positive staining was seen only in cytotrophoblasts but not in syncytiotrophoblasts. Similarly, cytotrophoblast, but not syncytiotrophoblast, cells of the rhesus placenta were immunopositive. In controls, either in the absence of antibody or in the presence of antibody pre-absorbed with GnRH, these cells failed to show stain. These observations indicate, for the first time, that an immunoreactive GnRH is produced and secreted by blastocysts during the peri-attachment period and by embryo-derived cytotrophoblast cells in the rhesus monkey.
Resumo:
We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
We propose, for the first time, a reinforcement learning (RL) algorithm with function approximation for traffic signal control. Our algorithm incorporates state-action features and is easily implementable in high-dimensional settings. Prior work, e. g., the work of Abdulhai et al., on the application of RL to traffic signal control requires full-state representations and cannot be implemented, even in moderate-sized road networks, because the computational complexity exponentially grows in the numbers of lanes and junctions. We tackle this problem of the curse of dimensionality by effectively using feature-based state representations that use a broad characterization of the level of congestion as low, medium, or high. One advantage of our algorithm is that, unlike prior work based on RL, it does not require precise information on queue lengths and elapsed times at each lane but instead works with the aforementioned described features. The number of features that our algorithm requires is linear to the number of signaled lanes, thereby leading to several orders of magnitude reduction in the computational complexity. We perform implementations of our algorithm on various settings and show performance comparisons with other algorithms in the literature, including the works of Abdulhai et al. and Cools et al., as well as the fixed-timing and the longest queue algorithms. For comparison, we also develop an RL algorithm that uses full-state representation and incorporates prioritization of traffic, unlike the work of Abdulhai et al. We observe that our algorithm outperforms all the other algorithms on all the road network settings that we consider.
Resumo:
The aim of logic synthesis is to produce circuits which satisfy the given boolean function while meeting timing constraints and requiring the minimum silicon area. Logic synthesis involves two steps namely logic decomposition and technology mapping. Existing methods treat the two as separate operation. The traditional approach is to minimize the number of literals without considering the target technology during the decomposition phase. The decomposed expressions are then mapped on to the target technology to optimize the area, Timing optimization is carried out subsequently, A new approach which treats logic decomposition and technology maping as a single operation is presented. The logic decomposition is based on the parameters of the target technology. The area and timing optimization is carried out during logic decomposition phase itself. Results using MCNC circuits are presented to show that this method produces circuits which are 38% faster while requiring 14% increase in area.
Resumo:
This paper proposes the development of dodecagonal (12-sided) space vector diagrams from cascaded H-Bridge inverters. As already reported in literatures, dodecagonal space vector diagrams have many advantages over conventional hexagonal ones. Some of them include the absence of 6n±1, (n=odd) harmonics from the phase voltage, and the extension of the linear modulation range. In this paper, a new power circuit is proposed for generating multiple dodecagons in the space vector plane. It consists of two cascaded H-Bridge cells fed from asymmetric dc voltage sources. It is shown that, with proper PWM timing calculation and placement of active and zero vectors, a very high quality of sine-wave can be produced. At the same time, the switching frequency of individual cells can be reduced substantially. Detailed PWM analysis, one design example and an elaborate simulation study is presented to support the proposed idea.
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user is using Orthogonal Frequency Division Multiplexing (OFDM). For this we develop cooperative sequential detection algorithms that use the autocorrelation property of cyclic prefix (CP) used in OFDM systems. We study the effect of timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. We also modify the detector to mitigate the effects of these impairments. The performance of the proposed algorithms is studied via simulations. We show that sequential detection can significantly improve the performance over a fixed sample size detector.
Resumo:
A new topology of asymmetric cascaded H-Bridge inverter is presented in this paper It consists of two cascaded H-bridge cells per phase. They are fed from isolated dc sources having a dc bus ratio of 1:0.366. Out of many space vectors possible from this circuit, only those are chosen that lie on 12-sided polygons. Thus, the overall space vector diagram produced by this circuit consists of multiple numbers of 12-sided polygons. With a proper PWM timing calculations based on these selected space vectors, it is possible to eliminate all the 6n +/- 1, (n = odd) harmonics from the phase voltage under all operating conditions. The switching frequency of individual H-Bridge cells is also substantially low. Extensive experimental results have been presented in this paper to validate the proposed concept.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
Background: Resource partitioning is facilitated by adaptations along niche dimensions that range from morphology to behaviour. The exploitation of hidden resources may require specially adapted morphological or sensory tools for resource location and utilisation. Differences in tool diversity and complexity can determine not only how many species can utilize these hidden resources but also how they do so. Methodology and Principal Findings: The sclerotisation, gross morphology and ultrastructure of the ovipositors of a seven-member community of parasitic wasps comprising of gallers and parasitoids developing within the globular syconia (closed inflorescences) of Ficus racemosa (Moraceae) was investigated. These wasps also differ in their parasitism mode (external versus internal oviposition) and their timing of oviposition into the expanding syconium during its development. The number and diversity of sensilla, as well as ovipositor teeth, increased from internally ovipositing to externally ovipositing species and from gallers to parasitoids. The extent of sclerotisation of the ovipositor tip matched the force required to penetrate the syconium at the time of oviposition of each species. The internally ovipositing pollinator had only one type of sensillum and a single notch on the ovipositor tip. Externally ovipositing species had multiple sensilla types and teeth on their ovipositors. Chemosensilla were most concentrated at ovipositor tips while mechanoreceptors were more widely distributed, facilitating the precise location of hidden hosts in these wasps which lack larval host-seeking behaviour. Ovipositor traits of one parasitoid differed from those of its syntopic galler congeners and clustered with those of parasitoids within a different wasp subfamily. Thus ovipositor tools can show lability based on adaptive necessity, and are not constrained by phylogeny. Conclusions/Significance: Ovipositor structure mirrored the increasingly complex trophic ecology and requirements for host accessibility in this parasite community. Ovipositor structure could be a useful surrogate for predicting the biology of parasites in other communities.
Resumo:
Cooperative transmission by base stations can significantly improve the spectral efficiency of multiuser, multi-cell multiple input multiple output systems. We show that in such systems the multiuser interference is asynchronous by nature, even when perfect timing-advance mechanisms ensure that the desired signal components arrive synchronously. We establish an accurate mathematical model for the asynchronism, and use it to show that the asynchronism leads to a significant performance degradation of existing linear preceding designs that assumed synchronous interference. We consider three different previously proposed precoding designs, and show how to modify them to effectively mitigate asynchronous interference.
Resumo:
In phase encoding optical CDMA (OCDMA) the spreading is achieved by encoding the phase of signal spectrum. In this paper we first derive a mathematical model for the output of phase encoding OCDMA systems. Based on this model we introduce a metric to design spreading sequences for asynchronous transmission. Then we connect the phase encoding sequence design problem to OFDM PMEPR (peak to mean envelope power ratio) problem. Using this connection we conclude that designing sequences with good properties for samples of timing delay guarantees that the same sequence to be good for all timing delays. Finally using generalized bent function we manage to construct a family of sequences which are good for asynchronous phase encoding OCDMA systems and using these sequences we introduce an M-ary modulation scheme for phase encoding OCDMA
Resumo:
With the emergence of voltage scaling as one of the most powerful power reduction techniques, it has been important to support voltage scalable statistical static timing analysis (SSTA) in deep submicrometer process nodes. In this paper, we propose a single delay model of logic gate using neural network which comprehensively captures process, voltage, and temperature variation along with input slew and output load. The number of simulation programs with integrated circuit emphasis (SPICE) required to create this model over a large voltage and temperature range is found to be modest and 4x less than that required for a conventional table-based approach with comparable accuracy. We show how the model can be used to derive sensitivities required for linear SSTA for an arbitrary voltage and temperature. Our experimentation on ISCAS 85 benchmarks across a voltage range of 0.9-1.1V shows that the average error in mean delay is less than 1.08% and average error in standard deviation is less than 2.85%. The errors in predicting the 99% and 1% probability point are 1.31% and 1%, respectively, with respect to SPICE. The two potential applications of voltage-aware SSTA have been presented, i.e., one for improving the accuracy of timing analysis by considering instance-specific voltage drops in power grids and the other for determining optimum supply voltage for target yield for dynamic voltage scaling applications.
Resumo:
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.
Resumo:
This article addresses the adaptation of a low-power natural gas engine for using producer gas as a fuel. The 5.9 L natural gas engine with a compression ratio of 10.5:1, rated at 55 kW shaft power, delivered 30 kW using producer gas as fuel in the naturally aspirated mode. Optimal ignition timing for peak power was found to be 20 degrees before top dead centre. Air-to-fuel ratio (A/F) was found to be 1.2 +/- 0.1 over a range of loads. Critical evaluation of the energy flows in the engine resulted in identifying losses and optimizing the engine cooling. The specific fuel consumption was found to be 1.2 +/- 0.1 kg of biomass per kilowatt hour. A reduction of 40 per cent in brake mean effective pressure was observed compared with natural gas operation. Governor response to load variations has been studied with respect to frequency recovery time. The study also attempts to adopt a turbocharger for higher power output. Preliminary results suggest a possibility of about 30 per cent increase in the output.