907 resultados para Time-invariant Wavelet Analysis
Resumo:
BACKGROUND AND AIMS Limited data from large cohorts are available on tumor necrosis factor (TNF) antagonists (infliximab, adalimumab, certolizumab pegol) switch over time. We aimed to evaluate the prevalence of switching from one TNF antagonist to another and to identify associated risk factors. METHODS Data from the Swiss Inflammatory Bowel Diseases Cohort Study (SIBDCS) were analyzed. RESULTS Of 1731 patients included into the SIBDCS (956 with Crohn's disease [CD] and 775 with ulcerative colitis [UC]), 347 CD patients (36.3%) and 129 UC patients (16.6%) were treated with at least one TNF antagonist. A total of 53/347 (15.3%) CD patients (median disease duration 9 years) and 20/129 (15.5%) of UC patients (median disease duration 7 years) needed to switch to a second and/or a third TNF antagonist, respectively. Median treatment duration was longest for the first TNF antagonist used (CD 25 months; UC 14 months), followed by the second (CD 13 months; UC 4 months) and third TNF antagonist (CD 11 months; UC 15 months). Primary nonresponse, loss of response and side effects were the major reasons to stop and/or switch TNF antagonist therapy. A low body mass index, a short diagnostic delay and extraintestinal manifestations at inclusion were identified as risk factors for a switch of the first used TNF antagonist within 24 months of its use in CD patients. CONCLUSION Switching of the TNF antagonist over time is a common issue. The median treatment duration with a specific TNF antagonist is diminishing with an increasing number of TNF antagonists being used.
Resumo:
SUMMARY Campylobacteriosis has been the most common food-associated notifiable infectious disease in Switzerland since 1995. Contact with and ingestion of raw or undercooked broilers are considered the dominant risk factors for infection. In this study, we investigated the temporal relationship between the disease incidence in humans and the prevalence of Campylobacter in broilers in Switzerland from 2008 to 2012. We use a time-series approach to describe the pattern of the disease by incorporating seasonal effects and autocorrelation. The analysis shows that prevalence of Campylobacter in broilers, with a 2-week lag, has a significant impact on disease incidence in humans. Therefore Campylobacter cases in humans can be partly explained by contagion through broiler meat. We also found a strong autoregressive effect in human illness, and a significant increase of illness during Christmas and New Year's holidays. In a final analysis, we corrected for the sampling error of prevalence in broilers and the results gave similar conclusions.
Resumo:
Noble gas analysis in early solar system materials, which can provide valuable information about early solar system processes and timescales, are very challenging because of extremely low noble gas concentrations (ppt). We therefore developed a new compact sized (33 cm length, 7.2cm diameter, 1.3 L internal volume) Time-of-Flight (TOF) noble gas mass spectrometer for high sensitivity. We call it as Edel Gas Time-of-flight (EGT) mass spectrometer. The instrument uses electron impact ionization coupled to an ion trap, which allows us to ionize and measure all noble gas isotopes. Using a reflectron set-up improves the mass resolution. In addition, the reflectron set-up also enables some extra focusing. The detection is via MCPs and the signals are processed either via ADC or TDC systems. The objective of this work is to understand the newly developed Time-Of-Flight (TOF) mass spectrometer for noble gas analysis in presolar grains of the meteorites. Chapter 1 briefly introduces the basic idea and importance of the instrument. The physics relevant to time-of-flight mass spectrometry technique is discussed in the Chapter 2 and Chapter 3 will present the oxidation technique of nanodiamonds of the presolar grains by using copper oxide. Chapter 4 will present the details about EGT data analysis software. Chapter 5 and Chapter 6 will explain the details about EGT design and operation. Finally, the performance results will be presented and discussed in the Chapter 7, and whole work is summarized in Chapter 8 and also outlook of the future work is given.
Resumo:
BACKGROUND Acute myeloid leukaemia mainly affects elderly people, with a median age at diagnosis of around 70 years. Although about 50-60% of patients enter first complete remission upon intensive induction chemotherapy, relapse remains high and overall outcomes are disappointing. Therefore, effective post-remission therapy is urgently needed. Although often no post-remission therapy is given to elderly patients, it might include chemotherapy or allogeneic haemopoietic stem cell transplantation (HSCT) following reduced-intensity conditioning. We aimed to assess the comparative value of allogeneic HSCT with other approaches, including no post-remission therapy, in patients with acute myeloid leukaemia aged 60 years and older. METHODS For this time-dependent analysis, we used the results from four successive prospective HOVON-SAKK acute myeloid leukaemia trials. Between May 3, 2001, and Feb 5, 2010, a total of 1155 patients aged 60 years and older were entered into these trials, of whom 640 obtained a first complete remission after induction chemotherapy and were included in the analysis. Post-remission therapy consisted of allogeneic HSCT following reduced-intensity conditioning (n=97), gemtuzumab ozogamicin (n=110), chemotherapy (n=44), autologous HSCT (n=23), or no further treatment (n=366). Reduced-intensity conditioning regimens consisted of fludarabine combined with 2 Gy of total body irradiation (n=71), fludarabine with busulfan (n=10), or other regimens (n=16). A time-dependent analysis was done, in which allogeneic HSCT was compared with other types of post-remission therapy. The primary endpoint of the study was 5-year overall survival for all treatment groups, analysed by a time-dependent analysis. FINDINGS 5-year overall survival was 35% (95% CI 25-44) for patients who received an allogeneic HSCT, 21% (17-26) for those who received no additional post-remission therapy, and 26% (19-33) for patients who received either additional chemotherapy or autologous HSCT. Overall survival at 5 years was strongly affected by the European LeukemiaNET acute myeloid leukaemia risk score, with patients in the favourable risk group (n=65) having better 5-year overall survival (56% [95% CI 43-67]) than those with intermediate-risk (n=131; 23% [19-27]) or adverse-risk (n=444; 13% [8-20]) acute myeloid leukaemia. Multivariable analysis with allogeneic HSCT as a time-dependent variable showed that allogeneic HSCT was associated with better 5-year overall survival (HR 0·71 [95% CI 0·53-0·95], p=0·017) compared with non-allogeneic HSCT post-remission therapies or no post-remission therapy, especially in patients with intermediate-risk (0·82 [0·58-1·15]) or adverse-risk (0.39 [0·21-0·73]) acute myeloid leukaemia. INTERPRETATION Collectively, the results from these four trials suggest that allogeneic HSCT might be the preferred treatment approach in patients 60 years of age and older with intermediate-risk and adverse-risk acute myeloid leukaemia in first complete remission, but the comparative value should ideally be shown in a prospective randomised study. FUNDING None.
Resumo:
PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.
Resumo:
OBJECTIVES The aim of this prospective cohort trial was to perform a cost/time analysis for implant-supported single-unit reconstructions in the digital workflow compared to the conventional pathway. MATERIALS AND METHODS A total of 20 patients were included for rehabilitation with 2 × 20 implant crowns in a crossover study design and treated consecutively each with customized titanium abutments plus CAD/CAM-zirconia-suprastructures (test: digital) and with standardized titanium abutments plus PFM-crowns (control conventional). Starting with prosthetic treatment, analysis was estimated for clinical and laboratory work steps including measure of costs in Swiss Francs (CHF), productivity rates and cost minimization for first-line therapy. Statistical calculations were performed with Wilcoxon signed-rank test. RESULTS Both protocols worked successfully for all test and control reconstructions. Direct treatment costs were significantly lower for the digital workflow 1815.35 CHF compared to the conventional pathway 2119.65 CHF [P = 0.0004]. For subprocess evaluation, total laboratory costs were calculated as 941.95 CHF for the test group and 1245.65 CHF for the control group, respectively [P = 0.003]. The clinical dental productivity rate amounted to 29.64 CHF/min (digital) and 24.37 CHF/min (conventional) [P = 0.002]. Overall, cost minimization analysis exhibited an 18% cost reduction within the digital process. CONCLUSION The digital workflow was more efficient than the established conventional pathway for implant-supported crowns in this investigation.
Resumo:
Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström’s sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St–Co, Co–St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St–Co than for Co–St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.
Resumo:
Analysis of recurrent events has been widely discussed in medical, health services, insurance, and engineering areas in recent years. This research proposes to use a nonhomogeneous Yule process with the proportional intensity assumption to model the hazard function on recurrent events data and the associated risk factors. This method assumes that repeated events occur for each individual, with given covariates, according to a nonhomogeneous Yule process with intensity function λx(t) = λ 0(t) · exp( x′β). One of the advantages of using a non-homogeneous Yule process for recurrent events is that it assumes that the recurrent rate is proportional to the number of events that occur up to time t. Maximum likelihood estimation is used to provide estimates of the parameters in the model, and a generalized scoring iterative procedure is applied in numerical computation. ^ Model comparisons between the proposed method and other existing recurrent models are addressed by simulation. One example concerning recurrent myocardial infarction events compared between two distinct populations, Mexican-American and Non-Hispanic Whites in the Corpus Christi Heart Project is examined. ^
Resumo:
Reelection and self-interest are recurring themes in the study of our congressional leaders. To date, many studies have already been done on the trends between elections, party affiliation, and voting behavior in Congress. However, because a plethora of data has been collected on both elections and congressional voting, the ability to draw a connection between the two provides a very reasonable prospect. This project analyzes whether voting shifts in congressional elections have an effect on congressional voting. Will a congressman become ideologically more polarized when his electoral margins increase? Essentially, this paper assumes that all congressmen are ideologically polarized, and it is elections which serve to reel congressmen back toward the ideological middle. The election and ideological data for this study, which spans from the 56th to the 107th Congress, finds statistically significant relationships between these two variables. In fact, congressman pay attention to election returns when voting in Congress. When broken down by party, Democrats are more exhibitive of this phenomenon, which suggest that Democrats may be more likely to intrinsically follow the popular model of representation. Meanwhile, it can be hypothesized that insignificant results for Republicans indicate that Republicans may follow a trustee model of representation.
Resumo:
Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^
Resumo:
The electroencephalogram (EEG) is a physiological time series that measures electrical activity at different locations in the brain, and plays an important role in epilepsy research. Exploring the variance and/or volatility may yield insights for seizure prediction, seizure detection and seizure propagation/dynamics.^ Maximal Overlap Discrete Wavelet Transforms (MODWTs) and ARMA-GARCH models were used to determine variance and volatility characteristics of 66 channels for different states of an epileptic EEG – sleep, awake, sleep-to-awake and seizure. The wavelet variances, changes in wavelet variances and volatility half-lives for the four states were compared for possible differences between seizure and non-seizure channels.^ The half-lives of two of the three seizure channels were found to be shorter than all of the non-seizure channels, based on 95% CIs for the pre-seizure and awake signals. No discernible patterns were found the wavelet variances of the change points for the different signals. ^
Resumo:
OBJECTIVE. To determine the effectiveness of active surveillance cultures and associated infection control practices on the incidence of methicillin resistant Staphylococcus aureus (MRSA) in the acute care setting. DESIGN. A historical analysis of existing clinical data utilizing an interrupted time series design. ^ SETTING AND PARTICIPANTS. Patients admitted to a 260-bed tertiary care facility in Houston, TX between January 2005 through December 2010. ^ INTERVENTION. Infection control practices, including enhanced barrier precautions, compulsive hand hygiene, disinfection and environmental cleaning, and executive ownership and education, were simultaneously introduced during a 5-month intervention implementation period culminating with the implementation of active surveillance screening. Beginning June 2007, all high risk patients were cultured for MRSA nasal carriage within 48 hours of admission. Segmented Poisson regression was used to test the significance of the difference in incidence of healthcare-associated MRSA during the 29-month pre-intervention period compared to the 43-month post-intervention period. ^ RESULTS. A total of 9,957 of 11,095 high-risk patients (89.7%) were screened for MRSA carriage during the intervention period. Active surveillance cultures identified 1,330 MRSA-positive patients (13.4%) contributing to an admission prevalence of 17.5% in high-risk patients. The mean rate of healthcare-associated MRSA infection and colonization decreased from 1.1 per 1,000 patient-days in the pre-intervention period to 0.36 per 1,000 patient-days in the post-intervention period (P<0.001). The effect of the intervention in association with the percentage of S. aureus isolates susceptible to oxicillin were shown to be statistically significantly associated with the incidence of MRSA infection and colonization (IRR = 0.50, 95% CI = 0.31-0.80 and IRR = 0.004, 95% CI = 0.00003-0.40, respectively). ^ CONCLUSIONS. It can be concluded that aggressively targeting patients at high risk for colonization of MRSA with active surveillance cultures and associated infection control practices as part of a multifaceted, hospital-wide intervention is effective in reducing the incidence of healthcare-associated MRSA.^
Resumo:
The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.