913 resultados para TiO2 underlayer
Resumo:
Electron-microprobe analysis, single-crystal X-ray diffraction with an area detector, and high-resolution transmission electron microscopy show that minerals related to wagnerite, triplite and triploidite, which are monoclinic Mg, Fe and Mn phosphates with the formula Me2+ 2PO4(F,OH), constitute a modulated series based on the average triplite structure. Modulation occurs along b and may be commensurate with (2b periodicity) or incommensurate but generally close to integer values (∼3b, ∼5b, ∼7b, ∼9b), i.e. close to polytypic behaviour. As a result, the Mg- and F-dominant minerals magniotriplite and wagnerite can no longer be considered polymorphs of Mg2PO4F, i.e., there is no basis for recognizing them as distinct species. Given that wagnerite has priority (1821 vs. 1951), the name magniotriplite should be discarded in favour of wagnerite. Hydroxylwagnerite, end-member Mg2PO4OH, occurs in pyrope megablasts along with talc, clinochlore, kyanite, rutile and secondary apatite in two samples from lenses of pyrope–kyanite–phengite–quartz-schist within metagranite in the coesite-bearing ultrahigh-pressure metamorphic unit of the Dora-Maira Massif, western Alps, Vallone di Gilba, Val Varaita, Piemonte, Italy. Electron microprobe analyses of holotype hydroxylwagnerite and of the crystal with the lowest F content gave in wt%: P2O5 44.14, 43.99; SiO2 0.28, 0.02; SO3 –, 0.01; TiO2 0.20, 0.16; Al2O3 0.06, 0.03; MgO 48.82, 49.12; FeO 0.33, 0.48; MnO 0.01, 0.02; CaO 0.12, 0.10; Na2O 0.01, –; F 5.58, 4.67; H2O (calc) 2.94, 3.36; –O = F 2.35, 1.97; Sum 100.14, 99.98, corresponding to (Mg1.954Fe0.007Ca0.003Ti0.004Al0.002Na0.001)Σ=1.971(P1.003Si0.008)Σ=1.011O4(OH0.526F0.474)Σ=1 and (Mg1.971Fe0.011Ca0.003Ti0.003Al0.001)Σ=1.989(P1.002Si0.001)Σ=1.003O4(OH0.603F0.397)Σ=1, respectively. Due to the paucity of material, H2O could not be measured, so OH was calculated from the deficit in F assuming stoichiometry, i.e., by assuming F + OH = 1 per formula unit. Holotype hydroxylwagnerite is optically biaxial (+), α 1.584(1), β 1.586(1), γ 1.587(1) (589 nm); 2V Z(meas.) = 43(2)°; orientation Y = b. Single-crystal X-ray diffraction gives monoclinic symmetry, space group P21/c, a = 9.646(3) Å, b = 12.7314(16) Å, c = 11.980(4) Å, β = 108.38(4) , V = 1396.2(8) Å3, Z = 16, i.e., hydroxylwagnerite is the OH-dominant analogue of wagnerite [β-Mg2PO4(OH)] and a high-pressure polymorph of althausite, holtedahlite, and α- and ε-Mg2PO4(OH). We suggest that the group of minerals related to wagnerite, triplite and triploidite constitutes a triplite–triploidite super-group that can be divided into F-dominant phosphates (triplite group), OH-dominant phosphates (triploidite group), O-dominant phosphates (staněkite group) and an OH-dominant arsenate (sarkinite). The distinction among the three groups and a potential fourth group is based only on chemical features, i.e., occupancy of anion or cation sites. The structures of these minerals are all based on the average triplite structure, with a modulation controlled by the ratio of Mg, Fe2+, Fe3+ and Mn2+ ionic radii to (O,OH,F) ionic radii.
Identification of adsorbed molecules via STM tip manipulation: CO, H₂O, and O₂ on TiO₂ anatase (101)
Resumo:
While Scanning Tunneling Microscopy (STM) has evolved as an ideal tool to study surface chemistry at the atomic scale, the identification of adsorbed species is often not straightforward. This paper describes a way to reliably identify H2O, CO and O2 on the TiO2 anatase (101) surface with STM. These molecules are of a key importance in the surface chemistry of this and many other (photo-) catalytic materials. They exhibit a wide variety of contrasts in STM images, depending on the tip condition. With clean, metallic tips the molecules appear very similar, i.e., as bright, dimer-like features located in the proximity of surface Ti5c atoms. However, each species exhibits a specific response to the electric field applied by the STM tip. It is shown that this tip–adsorbate interaction can be used to reliably ascertain the identity of such species. The tip–adsorbate interactions, together with comparison of experimental and calculated STM images, are used to analyse and revisit the assignments of molecular adsorbed species reported in recent studies.
Resumo:
Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.
Resumo:
A total of 167 samples distubuted throughout the CRP-3 drillhole from 5.77 to 787.68 mbsf and representing fine to coarse sandstones have been analysed by X-ray fluorescence spectrometry (XRF) Bulk sample geochemistry (major and trace elements) indicates a dominant provenance of detritus from the Ferrar Supergroup in the uppermost 200 mbsf of the core. A markedly increased contribution from the Beacon sandstones is recognized below 200 mbsf and down to 600 mbsf. In the lower part of CRP-3, down to 787.68 mbsf, geochemical evidence for influxes of Ferrar materials is again recorded. On the basis of preliminary magnetostratigraphic data reported for the lower 447 mbsf of the drillhole, we tentatively evaluated the main periodicities modulating the geochemical records. Our results identify a possible influence of the precession, obliquity and long-eccentricity astronomical components (21, 41, and 400 ky frequency bands) on the deposition mechanisms of the studied glaciomarine sediments.
Resumo:
Geochemical data are presented for samples from strata, mainly of Miocene age, in the Cape Roberts-1 core (western McMurdo Sound, Antarctica) to assess the sediment provenance. Bulk (major and trace element) chemistry together with bulk mineralogy of fine-grained sandstones, siltstones, mudstones, and diamictites indicate that chemical alteration of source materials, fractionation due to sedimentary sorting, and diagenetic effects were not significant in the Cape Roberts sediment history. Relevant geochemical parameters are consistent with the Cape Roberts sediments being derived mainly from the crystalline basement and the Beacon Supergroup. On the basis of element distributions, an additional contribution from the Ferrar Dolerite and, mainly above about 60 m, influxes of detritus derived from basanitic to intermediate members of the McMurdo Volcanic Group are recognised.
Resumo:
Thirty-nine medium and fine grained sandstones from between 19,26 and 147,23 mbsf in the Cape Roberts-l core (CRP-1) were analysed for 10 major and 16 trace elements. Using whole-lock compositions, 9 samples were selected for analyses of mineral and glass grains by energy dispersive electron microscope. Laser-Ablation Mass-Spectrometry was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to examine their contribution to the bulk rock chemistry. Geochemical data reveal the major contribution played by the Granite Harbour Intrusives to the whole rock composition, even if a significant input is supplied by McMurdo volcanics and Ferrar dolerite pyroxenes McMurdo volcanics were studied in detail; they appeal to derive from a variety of litologies, and a dominant role of wind transpoitation from exposures of volcanic rocks may be inferred from the contemporary occurrence of different compositions at all depths. Only at 116.55 mbsf was a thin layer of tephra found, linked to an explosive eruption McMurdo volcanic rocks exhibit larger abundances at depths above 62 mbsf, in correspondence with the onset of volcanic activity in the McMurdo Sound area. From 62 mbsf to the bottom of the core, McMurdo volcanics are less abundant and probably issued from some centres in the McMurdo Sound region. However, available data do not allow the exclusion of wind transport from some eruptive centres active in north Victoria Land at the beginning of the Miocene Epoch.
Resumo:
The 16 samples of Deep Sea Drilling Project (DSDP) Leg 89 basalts that we analyzed for whole rock major and trace elements and for mineralogic compositions are identical to some of the basalts recovered during Leg 61. Leg 89 samples are mostly olivine-plagioclase-clinopyroxene sparsely phyric basalts and exhibit a wide variety of textures. These basalts have lower TiO2 at a given Mg/(Mg+Fe2+)*100 than MORB (midocean ridge basalt). We recognize three major chemical types of basalts in the Nauru Basin. We believe that different degrees of partial melting, modified by fractional crystallization and possibly by magma mixing at shallow depths, can explain the chemical differences among the three groups. This petrogenetic model is consistent with the observed downhole chemical-chronostratigraphic relations of the samples. New 87Sr/86Sr and U3Nd/144Nd analyses of basalt samples from DSDP Site 462 indicate that the Nauru Basin igneous complex is within the Sr-Nd isotopic range of ocean island basalt. Thus the Nauru Basin igneous complex resembles MORB in many aspects of its chemistry, morphology, and secondary alteration patterns (Larson, Schlanger, et al., 1981), but not in its isotopic characteristics. If it were not for the unambiguous evidence that the Nauru Basin complex was erupted off-ridge, the complex could easily be interpreted as normal oceanic layer 2. For this reason, we speculate that the Nauru Basin igneous complex was produced in an oceanic riftlike environment when multiple, fast-propagating rifts were formed during the fast seafloor spreading episode in the Cretaceous.
Resumo:
The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.
Resumo:
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.
Resumo:
Sixty-four volcanic chists, sandstones and tephras between 5.95 and 618.19 meters below sea floor (mbsf) in the Cape Roberts Project cores 2 and 2A cores (CRP-2/2A) were examined for Cenozoic and Mesozoic volcanic components, using optical and Scanning Electron Microscopy. Minerals and glass shards in a selection of samples were analysed by electron microprobe fined with an EDAX detector. Laser-Ablation ICP-Mass-Spectrometry (ICP-MS) was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to pin-point the onset of McMurdo Volcanic Group (MVG) activity in the stratigraphic column. Pumices in tephra layers of peralkaline phonolite composition in Unit 7.2 -between 108 and 114 mbsf - were also analysed for trace elements by ICP-MS. This tephra unit is not reworked and its isotopic age (21.44 ± 0.05 Ma) is the age of deposition. The height of the eruptive column responsible for the deposition of the tephra was probably less than 8 km; the source was local, probably within 30 km from the drill site. Phonolite of unit 7.2 of CRP-2/2A has no direct petrogenetic relation with the peralkaline trachyte in the tephra-enriched layer of CRP-1 at 116.55 mbsf. Volcanic clasts and sand grains (glass shards, aegirine-augite, anorthoclase) related to Cenozoic activity of MVG were observed only starting from Unit 9.8, where they are dated at 24.22 ± 0.06 Ma at c. 280 mbsf. In this unit the lowest- occurring basaltic glass shard is found at 297.54 mbsf. Sampled McMurdo volcanics are generally vesicular and vary in composition from alkali basalt to trachyte and peralkaline phonolite. By contrast, below 320 mbsf, aphyric or slightly-porphyritic volcanic clasts become more abundant but they are all non-vesiculated, pigeconite and ilmenite-bearing basalts and dolerite of tholeiitic affinity. These rocks are considered to be related to lava flows and associated intrusions of Jurassic age (Kirkpatrick basalts and Ferrar dolerite). As in CRP-1, McMurdo volcanics appear to derive from a variety of lithologics. Besides glaciers, a dominant role of wind transportation from exposed volcanic rocks may be inferred from the contemporary occurrence of glass shards of different compositions at depths above 297.54 mbsf. These data confirm that the onset of magmatic activity in southern Victoria Land is considerably delayed (by about 24 Ma) with respect to northern Victoria Land.
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
The PS2644 deep-sea core sequence, retrieved from the northwestern margin of Iceland and covering the last 86 ka, exhibits high sedimentation rates during the last glacial cycle that allow the clear distinction of Greenland stadial (GS)/ interstadial (GI) cycles in the various proxy records. Abundance records of rhyolitic, basaltic and tachylytic tephra grains reveal several maxima. Tephra grains of all types were geochemically analyzed in 44 levels. A total of 92 tephras with a distinctive character have been defined within the glacial sequence of gravity core PS2644-5, whereas the Holocene record is dominated by reworked Vedde Ash grains and not suitable for tephra stratigraphic work. Of the 92 tephras only 19 geochemical populations have been linked with confidence to previously defined tephras such as from the Vedde Ash, Faeroe Marine Ash Zones (FMAZ) II and III and North Atlantic Ash Zone (NAAZ) II. For the glacial period informal names were given to 78 new tephras, most of which are basaltic tephras. Several of these layers have a unique geochemical character and might become new chronostratigraphic markers in the North Atlantic region. Linking the tephra populations to the volcanic system producing them, respectively, revealed that Icelandic eruptions dominate with 83 tephra geochemical populations and Jan Mayen with 9. Around 48% of the informal tephra layers linked to the Icelandic volcanic province are produced from either the Grimsvötn or the Veidivötn-Bardarbunga volcanic systems. The intervals spanning from Greenland Stadial (GS) 3 to Greenland Interstadial (GI) 4 (24.5-29 ka BP), from GI 8 to GS 10 (36.9-40.5 ka BP) and from GI 14 to GI 15.2 (50-56 ka BP) are the periods with the highest number of eruptions, all of which are associated with known tephra zones.
Resumo:
Samples from sediment cores collected during the Swedish Deep-Sea Expedition 1947-1948 have been analyzed in the Geochemical laboratory of the Geological Survey of Sweden. Most samples were placed at our disposal by Professor Hans Pettersson, leader of the expedition mentioned. For complementary studies, samples from the Atlantic and Indian oceans were included in our investigation and the samples placed at our disposal by Professor B. Kullenberg, Göteborg. From the Tyrrhenian Sea we got samples from Professor E. Norin, Uppsala.
Resumo:
This paper presents data on geographic and geologic conditions of modern sedimentation in the Lake Untersee, the largest lake in the East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism supplying aluminosilicate sedimentary material to the surface layer of bottom sediments is seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern part of the valley hosting the lake. Strongly reduced conditions in the lowermost 25 m of the water column in the smaller of two depressions of the lake bottom were favorable for enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. H2S-contaminated water results to significant enrichment of the sediments only in redox-sensitive elements that are able to migrate in anionic complexes and precipitate (co-precipitate) as sulfides.
Resumo:
Sarcya 1 dive explored a previously unknown 12 My old submerged volcano, labelled Cornacya. A well developed fracturation is characterised by the following directions: N 170 to N-S, N 20 to N 40, N 90 to N 120, N 50 to N 70, which corresponds to the fracturation pattern of the Sardinian margin. The sampled lavas exhibit features of shoshonitic suites of intermediate composition and include amphibole-and mica-bearing lamprophyric xenoliths which are geochemically similar to Ti-poor lamproites. Mica compositions reflect chemical exchanges between the lamprophyre and its shoshonitic host rock suggesting their simultaneous emplacement. Nd compositions of the Cornacya K-rich suite indicate that continental crust was largely involved in the genesis of these rocks. The spatial association of the lamprophyre with the shoshonitic rocks is geochemically similar to K-rich and TiO2-poor igneous suites, emplaced in post-collisional settings. Among shoshonitic rocks, sample SAR 1-01 has been dated at 12.6±0.3 My using the 40Ar/39Ar method with a laser microprobe on single grains. The age of the Cornacya shoshonitic suite is similar to that of the Sisco lamprophyre from Corsica, which similarly is located on the western margin of the Tyrrhenian Sea. Thus, the Cornacya shoshonitic rocks and their lamprophyric xenolith and the Sisco lamprophyre could represent post-collisional suites emplaced during the lithospheric extension of the Corsica-Sardinia block, just after its rotation and before the Tyrrhenian sea opening. Drilling on the Sardinia margin (ODP Leg 107) shows that the upper levels of the present day margin (Hole 654) suffered tectonic subsidence before the lower part (Hole 652). The structure of this lower part is interpreted as the result of an eastward migration of the extension during Late Miocene and Early Pliocene times. Data of Cornacya volcano are in good agreement with this model and provide good chronological constraints for the beginning of the phenomenon.