996 resultados para Thyroid Neoplasms -- metabolism
Resumo:
The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control), aminoethoxyvinylglycine (AVG), AVG + ethephon, AVG + naphthaleneacetic acid (NAA), ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS), AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.
Resumo:
Carnitine-free total parenteral nutrition (TPN) is claimed to result in a carnitine deficiency with subsequent impairment of fat oxidation. The present study was designed to evaluate the possible benefit of carnitine supplementation on postoperative fat and nitrogen utilization. Sixteen patients undergoing total esophagectomy were evenly randomized and received TPN without or with L-carnitine supplementation (74 mumol.kg-1.d-1) during 11 postoperative days. On day 11, a 4-h infusion of L-carnitine (125 mumol/kg) was performed in both groups. The effect of supplementation was evaluated by indirect calorimetry, N balance, and repeated measurements of plasma lipids and ketone bodies. Irrespective of continuous or acute supplementation, respiratory quotient and fat oxidation were similarly maintained throughout the study in both groups whereas N balance appeared to be more favorable without carnitine. We conclude that carnitine-supplemented TPN does not improve fat oxidation or promote N utilization in the postoperative phase.
Resumo:
Résumé Les études épidémiologiques indiquent que la restriction intra-utérine confère un risque accru de développement de diabète de type 2 au cours de la vie. Certaines études ont documenté la présence d'une résistance à l'insuline chez les jeunes adultes ou les adolescents nés petits pour l'âge gestationnel. Comme la plupart des études ont impliqués des individus post-pubères et comme la puberté influence de manière marquée le métabolisme énergétique, nous avons évalué le devenir du glucose administré oralement dans un groupe incluant essentiellement des enfants pré-pubères ou en début de puberté avec restriction intra-utérine, et chez des enfants matchés pour l'âge et pour le poids. Tous les enfants ont eu une évaluation de leur composition corporelle par mesure des plis cutanés. Ils ont ensuite été étudiés dans des conditions standardisées et ont reçu 4 charges consécutives orales de glucose à raison de 180 mg/kg de poids corporel jusqu'à atteindre un état d'équilibre relatif. La dépense énergétique et l'oxydation des substrats ont été évaluées durant la quatrième heure par calorimétrie indirecte. Comparativement avec les enfants matchés pour l'âge et le poids, les enfants nés petits pour l'âge gestationnel avaient une plus petite stature. Leur dépense énergétique n'était pas significativement abaissée, mais leur oxydation du glucose était plus basse. Ces résultats indiquent que des altérations métaboliques sont présentes précocement chez les enfants nés petits pour l'âge gestationnel, et qu'elles sont possiblement reliées à des altérations de la composition corporelle. Abstract: Epidemiological studies indicate that intrauterine growth restriction confers an increased risk of developing type 2 diabetes mellitus in subsequent life. Several studies have further documented the presence of insulin resistance in young adults or adolescent children born small for gestational age. Since most studies addressed postpubertal individuals, and since puberty markedly affects energy metabolism, we evaluated the disposal of oral glucose in a group including mainly prepubertal and early pubertal children with intrauterine growth restriction and in healthy age- and weight-matched control children. All children had an evaluation of their body composition by skinfold thickness measurements. They were then studied in standardized conditions and received 4 consecutive hourly loads of 180 mg glucose/kg body weight to reach a near steady state. Energy expenditure and substrate oxidation were evaluated during the fourth hour by indirect calorimetry. Compared to both age- and weight-matched children, children born small for gestational age had lower stature. Their energy expenditure was not significantly decreased, but they had lower glucose oxidation rates. These results indicate that metabolic alterations are present early in children born small for gestational age, and are possibly related to alterations of body composition.
Resumo:
The objective of this work was to evaluate the effect of inclusion of dietary glycerol in replacement to starch on the growth and energy metabolism of Nile tilapia juveniles. The experiment was carried out in a completely randomized design with four treatments (0, 5, 10, and 15% purified glycerol) and six replicates. Pelleted, isonitrogenous, and isocaloric diets were provided for 60 days. Growth performance parameters and muscle glucose and protein concentrations were not affected by dietary glycerol levels. The treatment with 15% glycerol presented higher levels of muscle and liver triglycerides. A quadratic effect of treatments on muscle and liver triglyceride concentrations was observed. The treatment with 0% glycerol presented higher hepatic glucose levels than the one with 15%. Treatments did not differ for concentrations of liver protein, as well as of plasma glucose, triglycerides, and protein. Treatments with 10 and 15% glycerol showed higher activity of the glucose-6-phosphate-dehydrogenase enzyme than the treatment with 5%; however, there were no significant differences in the hepatic activities of the malic and glycerol kinase enzymes. A linear positive effect of treatments was observed on the activity of the glycerol kinase enzyme in liver. Levels of glycerol inclusion above 10% in the diet of Nile tilapia juveniles characterize it as a lipogenic nutrient.
Dimethylarginines, homocysteine metabolism, and cerebrospinal fluid markers for Alzheimer's disease.
Resumo:
Dimethylarginine and homocysteine metabolism are closely linked and alterations of both were observed in plasma and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD). CSF parameters of homocysteine metabolism have recently been found to be associated with the CSF level of the AD biomarker phosphorylated tau (ptau) in AD patients. To investigate possible relationships between homocysteine and dimethylarginine metabolism and the AD CSF biomarkers ptau181 and amyloid-β 1-42 (Aβ42), we assessed parameters of homocysteine metabolism (CSF homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), 5-methyltetrahydrofolate (5-MTHF)) and dimethylarginine metabolism (plasma and CSF asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, L-arginine) as well as CSF Aβ42 and ptau181 in 98 controls and 51 AD patients. Multivariate linear regression analyses were performed to assess associations between the considered parameters. SAH concentrations show significant associations to CSF ADMA levels, and CSF ADMA and L-arginine to ptau181, but not to Aβ42 concentrations in AD patients. When including concentrations of homocysteine, 5-MTHF, SAM, and SAH into the analysis, CSF ADMA concentrations independently predicted ptau181 levels in AD patients but homocysteine-related metabolites were associated with ptau181 only when ADMA was removed from the analysis model. These results suggest that CSF ADMA may interact with CNS homocysteine metabolism and may contribute to neurodegeneration and accumulation of phosphorylated tau in AD. Functional and interventional studies are needed to further proof this hypothesis.
Resumo:
The aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R³OCONR&supl;R²), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the following series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ~ Alkyl-OCO-N(Alkyl)? ? Alkyl-OCO-N(endocyclic) ? Aryl-OCO-N(Alkyl)? ~ Aryl-OCO-N(endocyclic) ? Alkyl-OCO-NHAryl ~ Alkyl-OCO-NHAcyl?>> Alkyl-OCO-NH? > Cyclic carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs.
Resumo:
Marked differences in the tumor uptake of a 125I-labeled monoclonal antibody (MAb) directed against carcinoembryonic antigen (CEA) were observed in 4 serially transplanted human colorectal carcinomas in nude mice. A comparative study showed that elevated values of measurable tumor vascular parameters, such as permeability, blood flow and blood volume, correlated better with high MAb tumor uptake than the concentration of target antigen in the tumor. In an attempt to modify the vascular parameters and to determine if this could increase antibody uptake by the tumor, rhTNF alpha (TNF) was injected i.t. or i.v. and antibody localization experiments were performed immediately thereafter. Results showed that the permeability of the tumor vessels increased 8 to 10 fold 1 hr after i.t. injection of TNF as compared to control tumors injected with saline. Tumor uptake of 125I-labeled anti-CEA MAb, was 3 times higher 2 hr after i.v. injection and still 27% higher 22 hr later, as compared to results from controls. Intravenous injection of TNF simultaneously with the 125I-labeled anti-CEA MAb also resulted in a 2-fold increase in tumor uptake 4 hr after injection, but the increase was no longer significant 24 hr after injection. Interestingly after i.v. injection of TNF, the MAb concentration in the blood and other normal tissues, such as liver, kidneys, lungs and heart was decreased, resulting in significantly higher ratios of tumor to normal tissue. Taken together the results demonstrate that injection of TNF can increase tumor vascular permeability and improve radio-antibody uptake. This raises the possibility of increasing the radiation dose delivered by antibody to the tumor in the course of radioimmunotherapy.
Resumo:
Triiodothyronine (30 nM) added to serum-free cultures of mechanically dissociated re-aggregating fetal (15-16 days gestation) rat brain cells greatly increased the enzymatic activity of choline acetyltransferase and acetylcholinesterase throughout the entire culture period (33 days), and markedly accelerated the developmental rise of glutamic acid decarboxylase specific activity. The enhancement of choline acetyltransferase and acetylcholinesterase specific activities in the presence of triiodothyronine was even more pronouned in cultures of telencephalic cells. If triiodothyronine treatment was restricted to the first 17 culture days, the level of choline acetyltransferase specific activity at day 33 was 84% of that in chronically treated cultures and 270% of that in cultures receiving triiodothyronine between days 17 and 33, indicating that relatively undifferentiated cells were more responsive to the hormone. Triiodothyronine had no apparent effect on the incorporation of [3H]thymidine at day 5 or on the total DNA content of cultures, suggesting that cellular differentiation, rather than proliferation was affected by the hormone. Our findings in vitro are in good agreement with many observations in vivo, suggesting that rotation-mediated aggregating cell cultures of fetal rat brain provide a useful model to study thyroid hormone action in the developing brain.
Resumo:
This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex.
Resumo:
Background: Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30-40% of ER+ BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings.Results: We developed a gene classifier consisting of 181 genes belonging to 13 biological clusters. In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic groups (HR 2.01 95% CI: 1.29-3.13; p = 0.002). Six of the 13 gene clusters represented pathways involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was significantly predictive of response.Conclusion: We have developed a gene classifier that can predict clinical outcome in tamoxifen-treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in prognosis, our approach proposes other genes and pathways that may elucidate further mechanisms that influence clinical outcome and prediction of response to tamoxifen.
Resumo:
OBJECTIVE: To identify biological evidence for Alzheimer disease (AD) in individuals with subjective memory impairment (SMI) and unimpaired cognitive performance and to investigate the longitudinal cognitive course in these subjects. METHOD: [¹⁸F]fluoro-2-deoxyglucose PET (FDG-PET) and structural MRI were acquired in 31 subjects with SMI and 56 controls. Cognitive follow-up testing was performed (average follow-up time: 35 months). Differences in baseline brain imaging data and in memory decline were assessed between both groups. Associations of memory decline with brain imaging data were tested. RESULTS: The SMI group showed hypometabolism in the right precuneus and hypermetabolism in the right medial temporal lobe. Gray matter volume was reduced in the right hippocampus in the SMI group. At follow-up, subjects with SMI showed a poorer performance than controls on measures of episodic memory. Longitudinal memory decline in the SMI group was associated with reduced glucose metabolism in the right precuneus at baseline. CONCLUSION: The cross-sectional difference in 2 independent neuroimaging modalities indicates early AD pathology in SMI. The poorer memory performance at follow-up and the association of reduced longitudinal memory performance with hypometabolism in the precuneus at baseline support the concept of SMI as the earliest manifestation of AD.
Resumo:
The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.
Resumo:
PURPOSE: Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS: Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS: Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS: During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Resumo:
Background: In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria treatment, DNA microarray technology was compared with sequencing of polymerase chain reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger number of samples. Methods: The microarray was developed to affordably generate SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in antimalarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Results: For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was found, e. g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. Conclusion: The major limit of the microarray technology for this purpose was lack of robustness and with a large number of missing data or with incorrect specificity.
Resumo:
BACKGROUND: Mammalian target of rapamycin (mTOR) inhibitors such as rapamycin have shown modest effects in cancer therapy due in part to the removal of a negative feedback loop leading to the activation of the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling pathway. In this report, we have investigated the role of FOXO1, a downstream substrate of the PI3K/Akt pathway in the anticancer efficacy of rapamycin. MATERIALS AND METHODS: Colon cancer cells were treated with rapamycin and FOXO1 phosphorylation was determined by Western blot. Colon cancer cells transfected with a constitutively active mutant of FOXO1 or a control plasmid were treated with rapamycin and the antiproliferative efficacy of rapamycin was monitored. RESULTS: Rapamycin induced the phosphorylation of FOXO1 as well as its translocation from the nucleus to the cytoplasm, leading to FOXO1 inactivation. The expression of an active mutant of FOXO1 in colon cancer cells potentiated the antiproliferative efficacy of rapamycin in vitro and its antitumor efficacy in vivo. CONCLUSION: Taken together these results show that rapamycin-induced FOXO1 inactivation reduces the antitumor efficacy of rapamycin.