949 resultados para Three-dimensional rotational angiography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steadily increasing diversity of colloidal systems demands for new theoretical approaches and a cautious experimental characterization. Here we present a combined rheological and microscopical study of colloids in their arrested state whereas we did not aim for a generalized treatise but rather focused on a few model colloids, liquid crystal based colloidal suspensions and sedimented colloidal films. We laid special emphasis on the understanding of the mutual influence of dominant interaction mechanisms, structural characteristics and the particle properties on the mechanical behavior of the colloid. The application of novel combinations of experimental techniques played an important role in these studies. Beside of piezo-rheometry we employed nanoindentation experiments and associated standardized analysis procedures. These rheometric methods were complemented by real space images using confocal microscopy. The flexibility of the home-made setup allowed for a combination of both techniques and thereby for a simultaneous rheological and three-dimensional structural analysis on a single particle level. Though, the limits of confocal microscopy are not reached by now. We show how hollow and optically anisotropic particles can be utilized to quantify contact forces and rotational motions for individual particles. In future such data can contribute to a better understanding of particle reorganization processes, such as the liquidation of colloidal gels and glasses under shear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. METHODS: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with (99m)Tc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. RESULTS: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P<0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P=0.004) and involvement of diagonal branches (P=0.01). CONCLUSION: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: In pressure overload left ventricular (LV) hypertrophy, gender-related differences in global LV systolic function have been previously reported. The goal of this study was to determine regional systolic function of the left ventricle in male and female patients with hypertensive heart disease. METHODS AND RESULTS: Regional LV function was analyzed from multiplane transesophageal echocardiography with three-dimensional (3D) reconstruction of the left ventricle. In 24 patients (13 males and 11 females), four parallel (2 basal and 2 apical) equidistant short axis cross-sections from base to apex were obtained from the reconstructed LV. In each short axis 24 wall-thickness measurements were carried out at 15 degrees intervals at end-diastole and end-systole. Thus, a total of 192 measurements were obtained in each patient. Wall thickening was calculated as difference of end-diastolic and end-systolic wall thickness, and fractional thickening as thickening divided by end-diastolic thickness. Fractional thickening and wall stress were inversely related to end-diastolic wall thickness in both, males and females. Females showed less LV systolic function when compared to males (p<0.001). However, when corrected for wall stress, which was higher in females, there was no gender difference in systolic function. CONCLUSION: There are regional differences in LV systolic function in females and males which are directly related to differences in wall stress. Thus, gender-related differences in LV regional function are load-dependent and not due to structural differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PRINCIPLES: Cardiogoniometry is a non-invasive technique for quantitative three-dimensional vectorial analysis of myocardial depolarization and repolarization. We describe a method of surface electrophysiological cardiac assessment using cardiogoniometry performed at rest to detect variables helpful in identifying coronary artery disease. METHODS: Cardiogoniometry was performed in 793 patients prior to diagnostic coronary angiography. Using 13 variables in men and 10 in women, values from 461 patients were retrospectively analyzed to obtain a diagnostic score that would identify patients having coronary artery disease. This score was then prospectively validated on 332 patients. RESULTS: Cardiogoniometry showed a prospective diagnostic sensitivity of 64%, and a specificity of 82%. ECG diagnostic sensitivity was significantly lower, with 53% and a similar specificity of 75%. CONCLUSIONS: Cardiogoniometry is a new, noninvasive, quantitative electrodiagnostic technique which is helpful in identifying patients with coronary artery disease. It can easily be performed at rest and delivers an accurate, automated diagnostic score.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of connective tissue growth factor (CTGF), a member of the CCN gene family, is known to be significantly induced by mechanical stress. We have therefore investigated whether other members of the CCN gene family, including Cyr61 and Nov, might reveal a similar stress-dependent regulation. Fibroblasts growing under stressed conditions within a three-dimensional collagen gel showed at least a 15 times higher level of Cyr61 mRNA than cells growing under relaxed conditions. Upon relaxation, the decline of the Cyr61 mRNA to a lower level occurred within 2 h, and was thus quicker than the response of CTGF. The regulation was fully reversible when stress was reapplied. Thus, Cyr61 represents another typical example of a stress-responsive gene. The level of the Nov mRNA was low in the stressed state, but increased in the relaxed state. This CCN gene therefore shows an inverted regulation relative to that of Cyr61 and CTGF. Inhibition of protein kinases by means of staurosporine suppressed the stress-induced expression of Cyr61 and CTGF. Elevated levels of cAMP induced by forskolin mimicked the effects of relaxation on the regulation of Cyr61, CTGF and Nov. Thus, adenylate cyclase as well as one or several protein kinases might be involved in the mechanoregulation of these CCN genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: A precise, non-invasive, non-toxic, repeatable, convenient and inexpensive follow-up of renal transplants, especially following biopsies, is in the interest of nephrologists. Formerly, the rate of biopsies leading to AV fistulas had been underestimated. Imaging procedures suited to a detailed judgement of these vascular malformations are to be assessed. METHODS: Three-dimensional (3D) reconstruction techniques of ultrasound flow-directed and non-flow-directed energy mode pictures were compared with a standard procedure, gadolinium-enhanced nuclear magnetic resonance imaging angiography (MRA) using the phase contrast technique. RESULTS: Using B-mode and conventional duplex information, AV fistulas were localized in the upper pole of the kidney transplant of the index patient. The 3D reconstruction provided information about the exact localization and orientation of the fistula in relation to other vascular structures, and the flow along the fistula. The MRA provided localization and orientation information, but less functional information. Flow-directed and non-flow-directed energy mode pictures could be reconstructed to provide 3D information about vascular malformations in transplanted kidneys. CONCLUSION: In transplanted kidneys, 3D-ultrasound angiography may be equally as effective as MRA in localizing and identifying AV malformations. Advantages of the ultrasound method are that it is cheaper, non-toxic, non-invasive, more widely availability and that it even provides more functional information. Future prospective studies will be necessary to evaluate the two techniques further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Selektive Maskensintern ist ein neues, pulverbasiertes Additives Fertigungsverfahren. Das schichtweise aufgebrachte Kunststoffpulver wird hier flächig über einen Infrarotstrahler belichtet und aufgeschmolzen. Das Verfahren bietet ein großes Potential dreidimensionale, wärmeleitfähige Bauteile mit beliebiger Geometrie herzustellen. In diesem Beitrag wird darauf eingegangen, wie kommerziell erhältliches Polyamid 12-Pulver mit thermisch leitfähigen Füllstoffen, wie Aluminiumgrieß und Kupferkugeln, modifiziert und funktionalisierte Bauteile hergestellt werden können. Prozessrelevante Materialeigenschaften werden mittels Differential Scanning Kalorimetrie, Rotationsviskosimetrie und der Wärmeleitfähigkeit der modifizierten Pulver bestimmt. An den gefertigten Bauteilen wird die ausgebildete Morphologie, die mechanischen Eigenschaften als auch die Bauteilwärmeleitfähigkeit untersucht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methodological approaches in which data on nonverbal behavior are collected usually involve interpretive methods in which raters must identify a set of defined categories of behavior. However, present knowledge about the qualitative aspects of head movement behavior calls for recording detailed transcriptions of behavior. These records are a prerequisite for investigating the function and meaning of head movement patterns. A method for directly collecting data on head movement behavior is introduced. Using small ultrasonic transducers, which are attached to various parts of an index person's body (head and shoulders), a microcomputer defines receiver-transducers distances. Three-dimensional positions are calculated by triangulation. These data are used for further calculations concerning the angular orientation of the head and the direction, size, and speed of head movements (in rotational, lateral, and sagittal dimensions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To quantify the in vivo deformations of the popliteal artery during leg flexion in subjects with clinically relevant peripheral artery disease (PAD). Methods: Five patients (4 men; mean age 69 years, range 56–79) with varying calcification levels of the popliteal artery undergoing endovascular revascularization underwent 3-dimensional (3D) rotational angiography. Image acquisition was performed with the leg straight and with a flexion of 70°/20° in the knee/hip joints. The arterial centerline and the corresponding branches in both positions were segmented to create 3D reconstructions of the arterial trees. Axial deformation, twisting, and curvatures were quantified. Furthermore, the relationships between the calcification levels and the deformations were investigated. Results: An average shortening of 5.9%±2.5% and twist rate of 3.8±2.2°/cm in the popliteal artery were observed. Maximal curvatures in the straight and flexed positions were 0.12±0.04 cm−1 and 0.24±0.09 cm−1, respectively. As the severity of calcification increased, the maximal curvature in the straight position increased from 0.08 to 0.17 cm−1, while an increase from 0.17 to 0.39 cm−1 was observed for the flexed position. Axial elongations and arterial twisting were not affected by the calcification levels. Conclusion: The popliteal artery of patients with symptomatic PAD is exposed to significant deformations during flexion of the knee joint. The severity of calcification directly affects curvature, but not arterial length or twisting angles. This pilot study also showed the ability of rotational angiography to quantify the 3D deformations of the popliteal artery in patients with various levels of calcification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of approximately 1,280 flagellar motors, a approximately 3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Patients with biochemical failure (BF) after radical prostatectomy may benefit from dose-intensified salvage radiation therapy (SRT) of the prostate bed. We performed a randomized phase III trial assessing dose intensification. PATIENTS AND METHODS Patients with BF but without evidence of macroscopic disease were randomly assigned to either 64 or 70 Gy. Three-dimensional conformal radiation therapy or intensity-modulated radiation therapy/rotational techniques were used. The primary end point was freedom from BF. Secondary end points were acute toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0) and quality of life (QoL) according to the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaires C30 and PR25. RESULTS Three hundred fifty patients were enrolled between February 2011 and April 2014. Three patients withdrew informed consent, and three patients were not eligible, resulting in 344 patients age 48 to 75 years in the safety population. Thirty patients (8.7%) had grade 2 and two patients (0.6%) had grade 3 genitourinary (GU) baseline symptoms. Acute grade 2 and 3 GU toxicity was observed in 22 patients (13.0%) and one patient (0.6%), respectively, with 64 Gy and in 29 patients (16.6%) and three patients (1.7%), respectively, with 70 Gy (P = .2). Baseline grade 2 GI toxicity was observed in one patient (0.6%). Acute grade 2 and 3 GI toxicity was observed in 27 patients (16.0%) and one patient (0.6%), respectively, with 64 Gy, and in 27 patients (15.4%) and four patients (2.3%), respectively, with 70 Gy (P = .8). Changes in early QoL were minor. Patients receiving 70 Gy reported a more pronounced and clinically relevant worsening in urinary symptoms (mean difference in change score between arms, 3.6; P = .02). CONCLUSION Dose-intensified SRT was associated with low rates of acute grade 2 and 3 GU and GI toxicity. The impact of dose-intensified SRT on QoL was minor, except for a significantly greater worsening in urinary symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) crystallisation of Membrane proteins reconstitutes them into their native environment, the lipid bilayer. Electron crystallography allows the structural analysis of these regular protein–lipid arrays up to atomic resolution. The crystal quality depends on the protein purity, ist stability and on the crystallisation conditions. The basics of 2D crystallisation and different recent advances are reviewed and electron crystallography approaches summarised. Progress in 2D crystallisation, sample preparation, image detectors and automation of the data acquisition and processing pipeline makes 2D electron crystallography particularly attractive for the structural analysis of membrane proteins that are too small for single-particle analyses and too unstable to form three-dimensional (3D) crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications. The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion.