817 resultados para Thermo-optic studies in CdSe based quantum dots
Resumo:
The purpose of this study was to investigate the questioning strategies of preservice teachers whenteaching science as inquiry. The guiding questions for this research were: In what ways do the questioning strategies of preservice teachers differ for male and female elementary students when teaching science as inquiry and how is Bloom’s Taxonomy evident within the questioning strategies of preservice teachers? Examination of the data indicated that participants asked a total of 4,158 questions to their elementary aged students. Of these questions, 974 (23%) were asked to boys, and 991 (24%) were asked to girls. The remaining questions (53%) were asked to the class as a whole, therefore no gender could be assigned to these questions. In relation to Bloom’s Taxonomy, 74% of the questions were basic knowledge, 15% were secondary comprehension, 2% were application, 4% were analysis, 1% were synthesis, and 3% were evaluation.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility, and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as STrengthening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change susceptibility and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology -Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrenghtening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and / or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility and clinical outcomes are used as proxies for investigating interactions between external and/or endogenous agents and body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as the STrengthening Reporting of OBservational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology -Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE statement implementing nine existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
Resumo:
A new liquid-fuel injector was designed for use in the atmospheric-pressure, model gas turbine combustor in Bucknell University’s Combustion Research Laboratory during alternative fuel testing. The current liquid-fuel injector requires a higher-than-desired pressure drop and volumetric flow rate to provide proper atomization of liquid fuels. An air-blast atomizer type of fuel injector was chosen and an experiment utilizing water as the working fluid was performed on a variable-geometry prototype. Visualization of the spray pattern was achieved through photography and the pressure drop was measured as a function of the required operating parameters. Experimental correlations were used to estimate droplet sizes over flow conditions similar to that which would be experienced in the actual combustor. The results of this experiment were used to select the desired geometric parameters for the proposed final injector design and a CAD model was generated. Eventually, the new injector will be fabricated and tested to provide final validation of the design prior to use in the combustion test apparatus.
Resumo:
Objectives To compare the use of pair-wise meta-analysis methods to multiple treatment comparison (MTC) methods for evidence-based health-care evaluation to estimate the effectiveness and cost-effectiveness of alternative health-care interventions based on the available evidence. Methods Pair-wise meta-analysis and more complex evidence syntheses, incorporating an MTC component, are applied to three examples: 1) clinical effectiveness of interventions for preventing strokes in people with atrial fibrillation; 2) clinical and cost-effectiveness of using drug-eluting stents in percutaneous coronary intervention in patients with coronary artery disease; and 3) clinical and cost-effectiveness of using neuraminidase inhibitors in the treatment of influenza. We compare the two synthesis approaches with respect to the assumptions made, empirical estimates produced, and conclusions drawn. Results The difference between point estimates of effectiveness produced by the pair-wise and MTC approaches was generally unpredictable—sometimes agreeing closely whereas in other instances differing considerably. In all three examples, the MTC approach allowed the inclusion of randomized controlled trial evidence ignored in the pair-wise meta-analysis approach. This generally increased the precision of the effectiveness estimates from the MTC model. Conclusions The MTC approach to synthesis allows the evidence base on clinical effectiveness to be treated as a coherent whole, include more data, and sometimes relax the assumptions made in the pair-wise approaches. However, MTC models are necessarily more complex than those developed for pair-wise meta-analysis and thus could be seen as less transparent. Therefore, it is important that model details and the assumptions made are carefully reported alongside the results.