851 resultados para The Global Reporting Initiative


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food security is one of this century’s key global challenges. By 2050 the world will require increased crop production in order to feed its predicted 9 billion people. This must be done in the face of changing consumption patterns, the impacts of climate change and the growing scarcity of water and land. Crop production methods will also have to sustain the environment, preserve natural resources and support livelihoods of farmers and rural populations around the world. There is a pressing need for the ‘sustainable intensifi cation’ of global agriculture in which yields are increased without adverse environmental impact and without the cultivation of more land. Addressing the need to secure a food supply for the whole world requires an urgent international effort with a clear sense of long-term challenges and possibilities. Biological science, especially publicly funded science, must play a vital role in the sustainable intensifi cation of food crop production. The UK has a responsibility and the capacity to take a leading role in providing a range of scientifi c solutions to mitigate potential food shortages. This will require signifi cant funding of cross-disciplinary science for food security. The constraints on food crop production are well understood, but differ widely across regions. The availability of water and good soils are major limiting factors. Signifi cant losses in crop yields occur due to pests, diseases and weed competition. The effects of climate change will further exacerbate the stresses on crop plants, potentially leading to dramatic yield reductions. Maintaining and enhancing the diversity of crop genetic resources is vital to facilitate crop breeding and thereby enhance the resilience of food crop production. Addressing these constraints requires technologies and approaches that are underpinned by good science. Some of these technologies build on existing knowledge, while others are completely radical approaches, drawing on genomics and high-throughput analysis. Novel research methods have the potential to contribute to food crop production through both genetic improvement of crops and new crop and soil management practices. Genetic improvements to crops can occur through breeding or genetic modifi cation to introduce a range of desirable traits. The application of genetic methods has the potential to refi ne existing crops and provide incremental improvements. These methods also have the potential to introduce radical and highly signifi cant improvements to crops by increasing photosynthetic effi ciency, reducing the need for nitrogen or other fertilisers and unlocking some of the unrealised potential of crop genomes. The science of crop management and agricultural practice also needs to be given particular emphasis as part of a food security grand challenge. These approaches can address key constraints in existing crop varieties and can be applied widely. Current approaches to maximising production within agricultural systems are unsustainable; new methodologies that utilise all elements of the agricultural system are needed, including better soil management and enhancement and exploitation of populations of benefi cial soil microbes. Agronomy, soil science and agroecology—the relevant sciences—have been neglected in recent years. Past debates about the use of new technologies for agriculture have tended to adopt an either/or approach, emphasising the merits of particular agricultural systems or technological approaches and the downsides of others. This has been seen most obviously with respect to genetically modifi ed (GM) crops, the use of pesticides and the arguments for and against organic modes of production. These debates have failed to acknowledge that there is no technological panacea for the global challenge of sustainable and secure global food production. There will always be trade-offs and local complexities. This report considers both new crop varieties and appropriate agroecological crop and soil management practices and adopts an inclusive approach. No techniques or technologies should be ruled out. Global agriculture demands a diversity of approaches, specific to crops, localities, cultures and other circumstances. Such diversity demands that the breadth of relevant scientific enquiry is equally diverse, and that science needs to be combined with social, economic and political perspectives. In addition to supporting high-quality science, the UK needs to maintain and build its capacity to innovate, in collaboration with international and national research centres. UK scientists and agronomists have in the past played a leading role in disciplines relevant to agriculture, but training in agricultural sciences and related topics has recently suffered from a lack of policy attention and support. Agricultural extension services, connecting farmers with new innovations, have been similarly neglected in the UK and elsewhere. There is a major need to review the support for and provision of extension services, particularly in developing countries. The governance of innovation for agriculture needs to maximise opportunities for increasing production, while at the same time protecting societies, economies and the environment from negative side effects. Regulatory systems need to improve their assessment of benefits. Horizon scanning will ensure proactive consideration of technological options by governments. Assessment of benefi ts, risks and uncertainties should be seen broadly, and should include the wider impacts of new technologies and practices on economies and societies. Public and stakeholder dialogue—with NGOs, scientists and farmers in particular—needs to be a part of all governance frameworks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article aims to create intellectual space in which issues of social inequality and education can be analyzed and discussed in relation to the multifaceted and multi-levelled complexities of the modern world. It is divided into three sections. Section One locates the concept of social class in the context of the modern nation state during the period after the Second World War. Focusing particularly on the impact of ‘Fordism’ on social organization and cultural relations, it revisits the articulation of social justice issues in the United Kingdom, and the structures put into place at the time to alleviate educational and social inequalities. Section Two problematizes the traditional concept of social class in relation to economic, technological and sociocultural changes that have taken place around the world since the mid-1980s. In particular, it charts some of the changes to the international labour market and global patterns of consumption, and their collective impact on the re-constitution of class boundaries in ‘developed countries’. This is juxtaposed with some of the major social effects of neo-classical economic policies in recent years on the sociocultural base in developing countries. It discusses some of the ways these inequalities are reflected in education. Section Three explores tensions between the educational ideals of the ‘knowledge economy’ and the discursive range of social inequalities that are emerging within and beyond the nation state. Drawing on key motifs identified throughout, the article concludes with a reassessment of the concept of social class within the global cultural economy. This is discussed in relation to some of the major equity and human rights issues in education today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document contains a report on the work done under the ESA/Ariadna study 06/4101 on the global optimization of space trajectories with multiple gravity assist (GA) and deep space manoeuvres (DSM). The study was performed by a joint team of scientists from the University of Reading and the University of Glasgow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada’s SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1–1.5 km above the thermal tropopause in the subtropics to 3–4 km (2.5–3.5 km) in the north (south) polar region, implying somewhat weaker tropospherestratosphere- transport in the Southern Hemisphere. The ExTL bottom extends ~1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ~345 K (1.5 km or ~335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to run General Circulation Models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model (HadGEM1), with horizontal resolution increasing from approximately 270km to 60km (at 50N), is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135km or higher, particularly for Northern Hemisphere basins. Simulating the interannual variability of storm occurrence requires resolutions of 100km or higher; however, the level of skill is basin dependent. Higher resolution GCMs are increasingly able to capture the interannual variability of the large-scale environmental conditions that contribute to tropical cyclogenesis. Different environmental factors contribute to the interannual variability of tropical cyclones in the different basins: in the North Atlantic basin the vertical wind shear, potential intensity and low-level absolute vorticity are dominant, while in the North Pacific basins mid-level relative humidity and low-level absolute vorticity are dominant. Model resolution is crucial for a realistic simulation of tropical cyclone behaviour, and high-resolution GCMs are found to be valuable tools for investigating the global location and frequency of tropical cyclones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This study seeks to provide a review of the background and context to the engagement of RICS members with the sustainability agenda, and to examine the extent to which the surveying profession uses relevant information, tools and techniques to achieve the key objectives of sustainable development (or sustainability). Design/methodology/approach – The paper analyses results from a major international online survey of 4,600 RICS respondent members, supported by 31 structured telephone interviews. Findings – The results suggest that, although sustainability is highly relevant to RICS members’ work, a lack of knowledge and expertise is making it more difficult for sustainability tools and other information to be used effectively. Research limitations/implications – The survey is based on a substantial number of responses which are broadly representative of the global RICS population. A key implication is that “laggard” faculties include the disciplines of commercial property and valuation. Practical implications – The research suggests that key stakeholders must work together to provide better information, guidance and education and training to “hardwire” the sustainability agenda across RICS faculties. Originality/value – This is the first truly global survey of its kind and focuses particularly on those faculties that play a major role in property investment and finance (i.e. valuation and commercial property), comparing their position with that of other faculties in an international context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3, 4, 5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3, 6, 7, 8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 °C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate–carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large, well-documented wildfires have recently generated worldwide attention, and raised concerns about the impacts of humans and climate change on wildfire regimes. However, comparatively little is known about the patterns and driving forces of global fire activity before the twentieth century. Here we compile sedimentary charcoal records spanning six continents to document trends in both natural and anthropogenic biomass burning for the past two millennia. We find that global biomass burning declined from AD 1 to 1750, before rising sharply between 1750 and 1870. Global burning then declined abruptly after 1870. The early decline in biomass burning occurred in concert with a global cooling trend and despite a rise in the human population. We suggest the subsequent rise was linked to increasing human influences, such as population growth and land-use changes. Our compilation suggests that the final decline occurred despite increasing air temperatures and population. We attribute this reduction in the amount of biomass burned over the past 150 years to the global expansion of intensive grazing, agriculture and fire management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the first global-scale multi-sectoral regional assessment of the magnitude and uncertainty in the impacts of climate change avoided by emissions policies. The analysis suggests that the most stringent emissions policy considered here – which gives a 50% chance of remaining below a 2oC temperature rise target - reduces impacts by 20-65% by 2100 relative to a ‘business-as-usual’ pathway (A1B) which reaches 4oC, and can delay impacts by several decades. Effects vary between sector and region, and there are few noticeable effects of mitigation policy by 2030. The impacts avoided by 2100 are more strongly influenced by the date and level at which emissions peak than the rate of decline of emissions, with an earlier and lower emissions peak avoiding more impacts. The estimated proportion of impacts avoided at the global scale is relatively robust despite uncertainty in the spatial pattern of climate change, but the absolute amount of avoided impacts is considerably more variable and therefore uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global atmospheric electric circuit is driven by thunderstorms and electrified rain/shower clouds and is also influenced by energetic charged particles from space. The global circuit maintains the ionosphere as an equipotential at∼+250 kV with respect to the good conducting Earth (both land and oceans). Its “load” is the fair weather atmosphere and semi-fair weather atmosphere at large distances from the disturbed weather “generator” regions. The main solar-terrestrial (or space weather) influence on the global circuit arises from spatially and temporally varying fluxes of galactic cosmic rays (GCRs) and energetic electrons precipitating from the magnetosphere. All components of the circuit exhibit much variability in both space and time. Global circuit variations between solar maximum and solar minimum are considered together with Forbush decrease and solar flare effects. The variability in ion concentration and vertical current flow are considered in terms of radiative effects in the troposphere, through infra-red absorption, and cloud effects, in particular possible cloud microphysical effects from charging at layer cloud edges. The paper identifies future research areas in relation to Task Group 4 of the Climate and Weather of the Sun-Earth System (CAWSES-II) programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asian winter monsoon (AWM) response to the global warming was investigated through a long-term integration of the transient greenhouse warming with the ECHAM4/OPYC3 CGCM. The physics of the response was studied through analyses of the impact of the global warming on the variations of the ocean and land contrast near the ground in the Asian and western Pacific region and the east Asian trough and jet stream in the middle and upper troposphere. Forcing of transient eddy activity on the zonal circulation over the Asian and western Pacific region was also analyzed. It is found that in the global warming scenario the winter northeasterlies along the Pacific coast of the Eurasian continent weaken systematically and significantly, and intensity of the AWM reduces evidently, but the AWM variances on the interannual and interdecadal scales are not affected much by the global warming. It is suggested that the global warming makes the climate over the most part of Asia to be milder with enhanced moisture in winter. In the global warming scenario the contrasts of the sea level pressure and the near-surface temperature between the Asian continent and the Pacific Ocean become significantly smaller, northward and eastward shifts and weakening of the east Asian trough and jet stream in the middle and upper troposphere are found. As a consequence, the cold air in the AWM originating from the east Asian trough and high latitudes is less powerful. In addition, feedback of the transient activity also makes a considerable contribution to the higher-latitude shift of the jet stream over the North Pacific in the global warming scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971–2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6–35 % for 2011–2040, of 20–30 % for 2041–2070, and of 40–55 % for 2071–2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global aerosol transport model (Oslo CTM2) with main aerosol components included is compared to five satellite retrievals of aerosol optical depth (AOD) and one data set of the satellite-derived radiative effect of aerosols. The model is driven with meteorological data for the period November 1996 to June 1997 which is the time period investigated in this study. The modelled AOD is within the range of the AOD from the various satellite retrievals over oceanic regions. The direct radiative effect of the aerosols as well as the atmospheric absorption by aerosols are in both cases found to be of the order of 20 Wm−2 in certain regions in both the satellite-derived and the modelled estimates as a mean over the period studied. Satellite and model data exhibit similar patterns of aerosol optical depth, radiative effect of aerosols, and atmospheric absorption of the aerosols. Recently published results show that global aerosol models have a tendency to underestimate the magnitude of the clear-sky direct radiative effect of aerosols over ocean compared to satellite-derived estimates. However, this is only to a small extent the case with the Oslo CTM2. The global mean direct radiative effect of aerosols over ocean is modelled with the Oslo CTM2 to be –5.5 Wm−2 and the atmospheric aerosol absorption 1.5 Wm−2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland. The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities. The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle. The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991. Greenhouse gas concentrations continued to rise, increasing by more than expected based on with CO2 the 1979 to 2007 trend. In the oceans, the global mean uptake for 2007 is estimated to be 1.67 Pg-C, about CO2 0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979. Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years. In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.