946 resultados para Tell and show routine
Resumo:
Vapor sensors have been used for many years. Their applications range from detection of toxic gases and dangerous chemicals in industrial environments, the monitoring of landmines and other explosives, to the monitoring of atmospheric conditions. Microelectrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate sensitive devices. One type of MEMS vapor sensors is based on mass changing detection and the sensors have a functional chemical coating for absorbing the chemical vapor of interest. The principle of the resonant mass sensor is that the resonant frequency will experience a large change due to a small mass of gas vapor change. This thesis is trying to build analytical micro-cantilever and micro-tilting plate models, which can make optimization more efficient. Several objectives need to be accomplished: (1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate with the effects of air damping. (2) Perform design optimization of micro-tilting plate with a hole in the center. (3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever with the effects of air damping. (4) Perform design optimization of micro-cantilever by COMSOL. Analytical models of micro-tilting plate with a hole in the center are compared with a COMSOL simulation model and show good agreement. The analytical models have been used to do design optimization that maximizes sensitivity. The micro-cantilever analytical model does not show good agreement with a COMSOL simulation model. To further investigate, the air damping pressures at several points on the micro-cantilever have been compared between analytical model and COMSOL model. The analytical model is inadequate for two reasons. First, the model’s boundary condition assumption is not realistic. Second, the deflection shape of the cantilever changes with the hole size, and the model does not account for this. Design optimization of micro-cantilever is done by COMSOL.
Resumo:
Paracalanus quasimodo and Temora turbinata are two calanoid copepods prominent in the planktonic communities of the southeastern United States. Despite their prominence, the species and population level structure of these copepods is yet unexplored. The phylogeographic, temporal and phylogenetic structure of P. quasimodo and T. turbinata are examined in my study. Samples were collected from ten sites along the Gulf of Mexico and Florida peninsular coasts. Three sites were sampled quarterly for two years. Individuals were screened for unique ITS-1 sequences with denaturing gradient gel electrophoresis. Unique variants were sequenced at the nuclear ITS-1 and mitochondrial COI loci. Sampling sites were analyzed for pairwise community differences and for variances between geographic and temporal groupings. Genetic variants were analyzed for phylogenetic and coalescent topology. Paracalanus quasimodo is highly structured geographically with populations divided between the Gulf of Mexico, temperate Atlantic and subtropical Atlantic, in addition to isolation by distance. No significant differences were detected between the T. turbinata samples. Both P. quasimodo and T. turbinata are stable within sites over time and between sites within a sampling period, with two exceptions. The first was a pilot sample from Miami taken two years prior to the general sampling whose community showed significant differences from most of the other Miami samples. Paracalanus quasimodo had a positive correlation of Fst with time. The second was high temporal variability detected in the samples from Fort Pierce. Phylogenetically, both P. quasimodo and T. turbinata were in well supported, congeneric clades. Paracalanus quasimodo was not monophyletic, divided into two well-supported clades. Temora turbinata variants were in one clade with insignificant support for topology within the clade and very little intraspecific variation. Paracalanus quasimodo and T. turbinata populations show opposite trends. Paracalanus quasimodo occurs near shore and shows population structure mediated by hydrological features and distance, both geographic and temporal. The phylogeny shows two deeply divergent clades suggestive of cryptic speciation. In contrast, T. turbinata populations range further offshore and show little geographic or temporal structure. However, the low genetic variation detected in this region suggests a recent bottleneck event.
Resumo:
The objective of this study was to determine the dynamics and diversity of Escherichia coli populations in animal and environmental lines of a commercial farrow-to-finish pig farm in Spain along a full production cycle (July 2008 to July 2009), with special attention to antimicrobial resistance and the presence of integrons. In the animal line, a total of 256 isolates were collected from pregnant sows (10 samples and 20 isolates), 1-week-old piglets (20 samples and 40 isolates), unweaned piglets (20 samples and 38 isolates), growers (20 samples and 40 isolates), and the finishers' floor pen (6 samples and 118 isolates); from the underfloor pits and farm slurry tank environmental lines, 100 and 119 isolates, respectively, were collected. Our results showed that E. coli populations in the pig fecal microbiota and in the farm environment are highly dynamic and show high levels of diversity. These issues have been proven through DNA-based typing data (repetitive extragenic palindromic PCR [REP-PCR]) and phenotypic typing data (antimicrobial resistance profile comprising 19 antimicrobials). Clustering of the sampling groups based on their REP-PCR typing results showed that the spatial features (the line) had a stronger weight than the temporal features (sampling week) for the clustering of E. coli populations; this weight was less significant when clustering was performed based on resistotypes. Among animals, finishers harbored an E. coli population different from those of the remaining animal populations studied, considering REP-PCR fingerprints and resistotypes. This population, the most important from a public health perspective, demonstrated the lowest levels of antimicrobial resistance and integron presence.
Resumo:
BACKGROUND Bluetongue virus (BTV) is an economically important, arthropod borne, emerging pathogen in Europe, causing disease mainly in sheep and cattle. Routine vaccination for bluetongue would require the ability to distinguish between vaccinated and infected individuals (DIVA). Current vaccines are effective but are not DIVA. Virus-like particles (VLPs) are highly immunogenic structural mimics of virus particles, that only contain a subset of the proteins present in a natural infection. VLPs therefore offer the potential for the development of DIVA compatible bluetongue vaccines. METHODOLOGY/PRINCIPAL FINDINGS Merino sheep were vaccinated with either monovalent BTV-1 VLPs or a bivalent mixture of BTV-1 VLPs and BTV-4 VLPs, and challenged with virulent BTV-1 or BTV-4. Animals were monitored for clinical signs, antibody responses, and viral RNA. 19/20 animals vaccinated with BTV-1 VLPs either alone or in combination with BTV-4 VLPs developed neutralizing antibodies to BTV-1, and group specific antibodies to BTV VP7. The one animal that showed no detectable neutralizing antibodies, or group specific antibodies, had detectable viral RNA following challenge but did not display any clinical signs on challenge with virulent BTV-1. In contrast, all control animals' demonstrated classical clinical signs for bluetongue on challenge with the same virus. Six animals were vaccinated with bivalent vaccine and challenged with virulent BTV-4, two of these animals had detectable viral levels of viral RNA, and one of these showed clinical signs consistent with BTV infection and died. CONCLUSIONS There is good evidence that BTV-1 VLPs delivered as monovalent or bivalent immunogen protect from bluetongue disease on challenge with virulent BTV-1. However, it is possible that there is some interference in protective response for BTV-4 in the bivalent BTV-1 and BTV-4 VLP vaccine. This raises the question of whether all combinations of bivalent BTV vaccines are possible, or if immunodominance of particular serotypes could interfere with vaccine efficacy.
Resumo:
The Marine Park Prof. Luiz Saldanha, in the coast of Arrabida, is the first marine park in continental Portugal. This area is a Nature 2000 site and is considered to be a hotspot for European marine biodiversity. In 2005, the management plan of the park was implemented, ending several habitat menaces, thereby allowing an application to the LIFE-NATURE Programme. The LIFE-BIOMARES project aimed at the restoration and management of the biodiversity of the marine park through several actions. The restoration of the seagrass prairies that were completely destroyed by fishing activities and recreational boating, was one of the most challenging. It included the transplanting of seagrasses from donor populations and the germination of seagrass seeds for posterior plantation to maintain genetic diversity in the transplanted area. One of the most popular actions was the implementation of environmental friendly moorings to integrate recreational use of the area with environmental protection. Several dissemination and environmental education actions concerning the marine park and the project took place and contributed to the public increase of the park acceptance. The seabed habitats were mapped along the park and a surrounding area to 100 m depth in order to create a habitat cartography of the park and to help locate alternative fishing zones. Biodiversity assessments for macrofauna revealed seasonal variations and an effect of the protection status. Preliminary results are presented and show that the marine park regulations are having a positive effect on biodiversity conservation and sustainable fisheries, thereby showing that these kind of conservation projects are important to disseminate coastal conservation best practices. The Biomares project is a model project that can be followed in the implementation of marine reserves and the establishment of the Natura 2000 marine network.
Resumo:
Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.
Resumo:
Purpose: Relationships between psychic features and psychophysical parameters, such as blood pressure, have a high relevance in research on coping with stress. We want to investigate the correlation between blood pressure and this psychic features. Methods: We investigated 79 teachers from high schools and secondary schools in and around Leipzig, Germany. Using the systolic blood pressure as an indicator, we built three groups: hypotonics, normotonics, and hypertonics. We assessed several health psychologically dependent variables and looked for differences between these groups (Chi-Square-Test). Results: Hypotonics experienced more stress and less planning and goal behaviour. Furthermore, they more often use physical exercises in order to increase their social well-being. Hypertonics, on the other hand, were driven by fear of loss of control and show a higher sense of feeling threatened. Conclusions: We could find for each group different relationships that are highly relevant to health. This results shows how psychological features and physiological regulation mechanisms are linked.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
Bivalvia represents an ancient taxon including around 25,000 living species that have adapted to a wide range of environmental conditions, and show a great diversity in body size, shell shapes, and anatomic structure. Bivalves are characterized by highly variable genome sizes and extremely high levels of heterozygosity, which obstacle complete and accurate genome assemblies and hinder further genomic studies. Moreover, some bivalve species presented a stable evolutionary exception to the strictly maternal inheritance of mitochondria, namely doubly uniparental inheritance (DUI), making these species a precious model to study mitochondrial biology. During my PhD, I focused on a DUI species, the Manila clam Ruditapes philippinarum, and my work was two-folded. First, taking advantage of a newly assembled draft genome and a large RNA-seq dataset from different tissues of both sexes, I investigated 1) the role of gene expression and alternative splicing in tissue differentiation; 2) the relationship across tissue specificity, regulatory network connectivity, and sequence evolution; 3) sexual contrasting genetic markers potentially associated with sexual differentiation. The detailed information for this part is in Chapter 2. Second, using the same RNA-seq data, I investigated how nuclear oxidative phosphorylation (OXPHOS) genes coordinate with two divergent mitochondrial genomes in DUI species (mito-nuclear coordination and coevolution). To address this question, I compared transcription, polymorphism, and synonymous codon usage in the mitochondrial and nuclear OXPHOS genes of R. philippinarum in Chapter 3. To my knowledge, this thesis represents the first study exploring the role of alternative splicing in tissue differentiation, and the first study analyzing both transcriptional regulation and sequence evolution to investigate the coordination of OXPHOS genes in bivalves.
Resumo:
From its domestication until nowadays, the horse has assumed multiple roles in human society. Over time, this condition and the lack of specific regulation have led to the development of different kinds of management systems for this species. This Ph.D. research project aims to investigate horses' welfare in different management practices and housing systems, considering a multidisciplinary approach, taking into account biological function, naturalness, and affective dimension. The results are presented in five articles that evidence risk factors that can mine horse welfare, and examine tools and parameters that can be employed for its assessment. Our research shows the importance of considering the evolutionary history and the species-specific and behavioural needs of horses in their management and housing. Sociality, free movement, diet composition and foraging routine, and the workload that these animals undergo are important factors that should be taken into account. Furthermore, this research has evidenced the importance of employing different parameters (e.g., behaviour, endocrinological parameters, and immune activity) in welfare assessment and proposes the use of horsehair DHEA (dehydroepiandrosterone) as a possible useful additional non-invasive measure for the investigation of long-term stress conditions. Finally, our results underline the importance of considering the affective dimension in welfare research. Recently, Judgement Bias Tests (JBT), which are based on the influence of affective states on the decision-making process, have been widely employed in animal welfare research. However, our studies show that the use of spatial JBT in horses can have some limitations. Still today several management systems do not fulfill species-specific needs of horses, thus the implementation of specific regulations could ameliorate horse welfare. A multidisciplinary approach to welfare assessment is fundamental, but it should be always remembered the individual and its own characteristics, which can influence not only physiological, immunological, and behavioural responses but also emotional and cognitive dimensions.
Resumo:
We start in Chapter 2 to investigate linear matrix-valued SDEs and the Itô-stochastic Magnus expansion. The Itô-stochastic Magnus expansion provides an efficient numerical scheme to solve matrix-valued SDEs. We show convergence of the expansion up to a stopping time τ and provide an asymptotic estimate of the cumulative distribution function of τ. Moreover, we show how to apply it to solve SPDEs with one and two spatial dimensions by combining it with the method of lines with high accuracy. We will see that the Magnus expansion allows us to use GPU techniques leading to major performance improvements compared to a standard Euler-Maruyama scheme. In Chapter 3, we study a short-rate model in a Cox-Ingersoll-Ross (CIR) framework for negative interest rates. We define the short rate as the difference of two independent CIR processes and add a deterministic shift to guarantee a perfect fit to the market term structure. We show how to use the Gram-Charlier expansion to efficiently calibrate the model to the market swaption surface and price Bermudan swaptions with good accuracy. We are taking two different perspectives for rating transition modelling. In Section 4.4, we study inhomogeneous continuous-time Markov chains (ICTMC) as a candidate for a rating model with deterministic rating transitions. We extend this model by taking a Lie group perspective in Section 4.5, to allow for stochastic rating transitions. In both cases, we will compare the most popular choices for a change of measure technique and show how to efficiently calibrate both models to the available historical rating data and market default probabilities. At the very end, we apply the techniques shown in this thesis to minimize the collateral-inclusive Credit/ Debit Valuation Adjustments under the constraint of small collateral postings by using a collateral account dependent on rating trigger.
Resumo:
The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.
Resumo:
Our objective in this thesis is to study the pseudo-metric and topological structure of the space of group equivariant non-expansive operators (GENEOs). We introduce the notions of compactification of a perception pair, collectionwise surjectivity, and compactification of a space of GENEOs. We obtain some compactification results for perception pairs and the space of GENEOs. We show that when the data spaces are totally bounded and endow the common domains with metric structures, the perception pairs and every collectionwise surjective space of GENEOs can be embedded isometrically into the compact ones through compatible embeddings. An important part of the study of topology of the space of GENEOs is to populate it in a rich manner. We introduce the notion of a generalized permutant and show that this concept too, like that of a permutant, is useful in defining new GENEOs. We define the analogues of some of the aforementioned concepts in a graph theoretic setting, enabling us to use the power of the theory of GENEOs for the study of graphs in an efficient way. We define the notions of a graph perception pair, graph permutant, and a graph GENEO. We develop two models for the theory of graph GENEOs. The first model addresses the case of graphs having weights assigned to their vertices, while the second one addresses weighted on the edges. We prove some new results in the proposed theory of graph GENEOs and exhibit the power of our models by describing their applications to the structural study of simple graphs. We introduce the concept of a graph permutant and show that this concept can be used to define new graph GENEOs between distinct graph perception pairs, thereby enabling us to populate the space of graph GENEOs in a rich manner and shed more light on its structure.
Resumo:
In the first chapter, “Political power and the influence of minorities: theory and evidence from Italy”, I analyze the relationship between minority and majority in politics, and how it can influence policy outcomes. I first present a theoretical model describing the possible consequences of an increase in a minority’s political power and show how it can increase difficulties in reaching a compromise on policy outcomes between parties. Furthermore, I empirically test these implications by exploiting the introduction in 2012 of a gender quota in Italian local elections: the increase in female politicians had heterogeneous effects on the level of funding for daycare, based on its differential effects on the share of women councillors. The second chapter, “Marriage patterns and the gender gap in labor force participation: evidence from Italy”, presents evidence highlighting a new possible determinant of the large gender gap in the Italian labor force: endogamy intensity. I argue that endogamy helps preserve social norms stigmatizing working women and reduces the probability of divorce, which disincentivizes women’s participation in the labor force. Endogamy is proxied by the degree of concentration of its surnames’ distribution, and I provide evidence that a more intense custom of endogamy contributed to enlarging gender participation gaps across Italian municipalities in 2001. The third chapter, “Information and quality of politicians: is transparency helping voters?”, studies how voting choices are affected by giving voters more personal information on candidates. I exploit the introduction of the “Spazzacorrotti” law in Italy in 2019, which imposed candidates at local elections to publish their CVs and criminal records before elections. I find no effects on elected candidates’ age, gender, educational level, or ideology. Moreover, I present anecdotal evidence that candidates with a criminal record received fewer votes on average, but only in the case of local media exposing it.
Resumo:
Background: WGS is increasingly used as a first-line diagnostic test for patients with rare genetic diseases such as neurodevelopmental disorders (NDD). Clinical applications require a robust infrastructure to support processing, storage and analysis of WGS data. The identification and interpretation of SVs from WGS data also needs to be improved. Finally, there is a need for a prioritization system that enables downstream clinical analysis and facilitates data interpretation. Here, we present the results of a clinical application of WGS in a cohort of patients with NDD. Methods: We developed highly portable workflows for processing WGS data, including alignment, quality control, and variant calling of SNVs and SVs. A benchmark analysis of state-of-the-art SV detection tools was performed to select the most accurate combination for SV calling. A gene-based prioritization system was also implemented to support variant interpretation. Results: Using a benchmark analysis, we selected the most accurate combination of tools to improve SV detection from WGS data and build a dedicated pipeline. Our workflows were used to process WGS data from 77 NDD patient-parent families. The prioritization system supported downstream analysis and enabled molecular diagnosis in 32% of patients, 25% of which were SVs and suggested a potential diagnosis in 20% of patients, requiring further investigation to achieve diagnostic certainty. Conclusion: Our data suggest that the integration of SNVs and SVs is a main factor that increases diagnostic yield by WGS and show that the adoption of a dedicated pipeline improves the process of variant detection and interpretation.