959 resultados para Tarbon Bay
Resumo:
Abraham Granovsky
Resumo:
Josef Loewy
Resumo:
Josef Waitz
Resumo:
Kurt Ruppin
Resumo:
Summer nighttime abundance and localized distribution of fishes in a tidal cove were studied by beach seining for comparison with a previous daytime study. American eels were relatively abundant at night and absent during the day. Alewife, blueback herring, and Atlantic silver-side were more abundant in the cove at night. Although mummichog numbers were greatly reduced at night, they remained an important constituent of the night fauna. Lesser components of the night fauna included Atlantic herring, Atlantic tomcod, smooth flounder, winter flounder, and rainbow smelt.
Resumo:
The nonresidual concentrations of five trace metals were determined for 322 sediments that were the product of a systematic sampling program of the entire Galveston Bay system. The nonresidual component of the trace metal concentration (e.g. that fraction of the metals that can be relatively easily removed from the sediments without complete destruction of the sediment particle) was considered to be more indicative of the anthropogenic metal pollution that has impacted the Galveston Bay ecosystem.^ For spatial analysis of the metal concentrations, the Galveston Bay system was divided into nine bay-areas, based on easily definable geological and geographical characteristics. Isopleth mapping analyses of these metal concentrations indicated a direct relationship with the $<$63$\mu$m fraction of the sediment (%FINE) in all of the bay areas. Covariate regression analyses indicated that position of the sediment within the Galveston Bay system (e.g. bay-area) was a better predictor of metal concentration than %FINE. Analysis of variance of the metals versus the bay-areas indicated that the five metals maintained a relatively constant order and magnitude of concentration for all the bay-areas.^ The major shipping channels of the Galveston Bay system, with their associated vessels and transported materials, are a likely source of metal pollution. However, these channels were not depositional corridors of high metal concentration. All metal concentration highs were found to be located away from the channels and associated with %FINE highs in the deeper portions of the bay-areas.^ Disturbance of the sediments, by the proposed widening and deepening of these channels, is not predicted to remobilize the trace metals. A more likely adverse effect on the health of the Galveston Bay ecosystem would come from the increase in turbidity of the water due to the dredging and in an extension of the salt water wedge farther north into the bay system. ^