994 resultados para Tagus River


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of intertidal benthic diatoms assemblages in the Tagus estuary was investigated during a 2-year survey, carried out in six stations with different sediment texture. Nonparametric multivariate analyses were used to characterize spatial and temporal patterns of the assemblages and to link them to the measured environmental variables. In addition, diversity and other features related to community physiognomy, such as size-class or life-form distributions, were used to describe the diatom assemblages. A total of 183 diatom taxa were identified during cell counts and their biovolume was determined. Differences between stations (analysis of similarity (ANOSIM), R=0.932) were more evident than temporal patterns (R=0.308) and mud content alone was the environmental variable most correlated to the biotic data (BEST, rho=0.863). Mudflat stations were typically colonized by low diversity diatom assemblages (H' similar to 1.9), mainly composed of medium-sized motile epipelic species (250-1,000 mu m(3)), that showed species-specific seasonal blooms (e.g., Navicula gregaria Donkin). Sandy stations had more complex and diverse diatom assemblages (H' similar to 3.2). They were mostly composed by a large set of minute epipsammic species (<250 mu m(3)) that, generally, did not show temporal patterns. The structure of intertidal diatom assemblages was largely defined by the interplay between epipelon and epipsammon, and its diversity was explained within the framework of the Intermediate Disturbance Hypothesis. However, the spatial distribution of epipelic and epipsammic life-forms showed that the definition of both functional groups should not be over-simplified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Water Framework Directive requires EU Member States to introduce water quality objectives for all water bodies, including coastal waters. Measures will have to be introduced if these objectives are not met, given predictions based on current trends. In this context, the estimation of future fluxes of nutrients and contaminants in the catchment, and the evaluation of policies to improve water quality in coastal zones are an essential part of river basin management plans. This paper investigates the use of scenarios for integrated catchment/coastal zone management in the Humber Estuary in the U.K. The context of this ongoing research is a European research project which aims to assist the implementation of integrated catchment and coastal zone management by analysing the response of the coastal sea to changes in fluxes of nutrients and contaminants from the catchments. The example of the Humber illustrates how scenarios focusing on water quality improvement can provide a useful tool to investigate future fluxes and evaluate policy options for a more integrated coastal/catchment management strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To restore lateral connectivity in highly regulated river-floodplain systems, it has become necessary to implement localized, "managed" connection flows, made possible using floodplain irrigation infrastructure. These managed flows contrast with "natural", large-scale, overbank flood pulses. We compared the effects of a managed and a natural connection event on (i) the composition of the large-bodied fish community and (ii) the structure of an endangered catfish population of a large floodplain lake. The change in community composition following the managed connection was not greater than that exhibited between seasons or years during disconnection. By contrast, the change in fish community structure following the natural connection was much larger than that attributed to background, within-and between-year variability during disconnection. Catfish population structure only changed significantly following the natural flood. While the natural flood increased various population rates of native fishes, it also increased those of non-native carp, a pest species. To have a positive influence on native biodiversity, environmental flows may need to be delivered to floodplains in a way that simulates the properties of natural flood pulses. A challenge, however, will be managing river-floodplain connectivity to benefit native more than non-native species.