925 resultados para TYROSINE KINASE-1
Resumo:
Brain metastasis is a common cause of mortality in cancer patients. Approximately 20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF- IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking sublines of breast cancer cells, driving an increase in in vitro metastatic properties. We demonstrate that IGF-IR signaling is activated in an autocrine manner as a result of IGFBP3 overexpression in brain-seeking cells. Transient and stable knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling through phospho-AKT, as well as decreased in vitro migration and invasion of MDA- MB-231Br brain-seeking cells. Using an in vivo experimental brain metastasis model, we show that IGF-IR ablation attenuates the establishment of brain metastases and prolongs survival. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.
Resumo:
The neu oncogene encodes a growth factor receptor-like protein, p185, with an intrinsic tyrosine kinase activity. A single point mutation, an A to T transversion resulting in an amino acid substitution from valine to glutamic acid, in the transmembrane domain of the rat neu gene was found to be responsible for the transforming and tumorigenic phenotype of the cells that carry it. In contrast, the human proto-neu oncogene is frequently amplified in tumors and cell lines derived from tumors and the human neu gene overexpression/amplification in breast and ovarian cancers is known to correlate with poor patient prognosis. Examples of the human neu gene overexpression in the absence of gene amplification have been observed, which may suggest the significant role of the transcriptional and/or post-transcriptional control of the neu gene in the oncogenic process. However, little is known about the transcriptional mechanisms which regulate the neu gene expression. In this study, three examples are presented to demonstrate the positive and negative control of the neu gene expression.^ First, by using band shift assays and methylation interference analyses, I have identified a specific protein-binding sequence, AAGATAAAACC ($-$466 to $-$456), that binds a specific trans-acting factor termed RVF (for EcoRV factor on the neu promoter). The RVF-binding site is required for maximum transcriptional activity of the rat neu promoter. This same sequence is also found in the corresponding regions of both human and mouse neu promoters. Furthermore, this sequence can enhance the CAT activity driven by a minimum promoter of the thymidine kinase gene in an orientation-independent manner, and thus it behaves as an enhancer. In addition, Southwestern (DNA-protein) blot analysis using the RVF-binding site as a probe points to a 60-kDa polypeptide as a potential candidate for RVF.^ Second, it has been reported that the E3 region of adenovirus 5 induces down-regulation of epidermal growth factor (EGF) receptor through endocytosis. I found that the human neu gene product, p185, (an EGF receptor-related protein) is also down-regulated by adenovirus 5, but via a different mechanism. I demonstrate that the adenovirus E1a gene is responsible for the repression of the human neu gene at the transcriptional level.^ Third, a differential expression of the neu gene has been found in two cell model systems: between the mouse fibroblast Swiss-Webster 3T3 (SW3T3) and its variant NR-6 cells; and between the mouse liver tumor cell line, Hep1-a, and the mouse pancreas tumor cell line, 266-6. Both NR-6 and 266-6 cell lines are not able to express the neu gene product, p185. I demonstrate that, in both cases, the transcriptional repression of the neu gene may account for the lack of the p185 expression in these two cell lines. ^
Resumo:
The neu gene encodes a 185,000-Da membrane glycoprotein that is highly homologous to epidermal growth factor receptor. It is frequently overexpressed or amplified in human breast carcinomas and ovarian cancers, which correlates with a poor prognosis for patients. The importance of neu gene regulation is noted by the fact that many breast cancer cells overexpress the neu gene without proportional gene amplification. The mechanism for that is unclear. My initial finding of neu autoregulation led to a realization that defects in neu autoregulation pathway may contribute to neu overexpression in tumor cells. I have found in the nontransformed NIH 3T3 model system that (i) the neu gene product autorepresses its own promoter activity, (ii) the neu gene promoter contains a novel enhancer, (iii) neu autorepression is mediated through this enhancer by inhibition of the enhancer activity, and (iv) c-myc expression serves as an intermediate step downstream from the membrane bound neu-encoded receptor in this complicated feedback inhibition pathway.^ In addition, a part of my research is studying the neu-encoded receptor molecule. I have generated a construct coding the neu ligand-binding domain and demonstrated that (i) the neu ligand-binding domain is a secretory peptide, (ii) it inhibits the normal neu-associated tyrosine kinase but not activated neu-associated tyrosine kinase. My study provided experimental evidence for the mechanisms of neu gene activation. ^
Resumo:
HER-2/neu is a receptor tyrosine kinase highly homologous with epidermal growth factor receptor. Overexpression and/or amplification of HER-2/neu has been implicated in the genesis of a number of human cancers, especially breast and ovarian cancers. Transcriptional upregulation has been shown to contribute significantly to the overexpression of this gene. Studies on the transcriptional regulation of HER-2/neu gene are important for understanding the mechanism of cell transformation and developing the therapeutic strategies to block HER-2/neu-mediated cancers. PEA3 is a DNA binding transcriptional factor and its consensus sequence exists on the HER-2/neu promoter. To examine the role of PEA3 in HER-2/neu expression and cell transformation, we transfected PEA3 into the human breast and ovarian cancer cells that overexpress HER-2/neu and showed that PEA3 dramatically represses HER-2/neu transcription. PEA3 suppresses the oncogenic neu-mediated transformation in mouse fibroblast NIH 3T3 cells. Expression of PEA3 selectively blocks the growth of human cancer cells that overexpress HER-2/neu and inhibits their colony formation. It does not occur in the cancer cells expressing basal level of HER-2/neu. Further studies in the orthotopic ovarian cancer model demonstrated that expression of PEA3 preferentially inhibits growth and tumor development of human cancer cells that overexpress HER-2/neu, the tumor-bearing mice survived significantly longer if treated by injection of the PEA3-liposome complex intraperitoneally. Immunoblotting and immunohistochemical analysis of the tumor tissues indicated that PEA3 mediates the tumor suppression activity through targeting HER-2/neu-p185. Thus, PEA3 is a negative regulator of HER-2/neu gene expression and functions as a tumor suppressor gene in the HER-2/neu-overexpressing human cancer cells.^ The molecular mechanisms of PEA3 mediated transcriptional repression were investigated. PEA3 binds specifically at the PEA3 site on HER-2/neu promoter and this promoter-binding is required for the PEA3 mediated transcriptional repression. Mutation of the PEA3 binding site on HER-2/neu promoter causes decreased transcriptional activity, indicating that the PEA3 binding site is an enhancer-like element in the HER-2/neu-overexpressing cells. We therefore hypothesized that in the HER-2/neu-overexpressing cells, PEA3 competes with a transactivator for binding to the PEA3 site, preventing the putative factor from activating the transcription of HER-2/neu. This hypothesis was supported by the data which demonstrate that PEA3 competes with another nuclear protein for binding to the HER-2/neu promoter in vitro, and expression of a truncated protein which encodes the DNA binding domain of PEA3 is sufficient to repress HER-2/neu transcription in the HER-2/neu-overexpressing human cancer cells. ^
Resumo:
Chronic myelogenous leukemia (CML) is characterized cytogenetically by the presence of the Philadelphia chromosome and clinically by the clonal expansion of the hematopoietic stem cells and the accumulation of large numbers of myeloid cells. Philadelphia chromosome results from the reciprocal translocation between chromosomes 9 and 22 [t(9;22)(324;q11)], which fuses parts of the ABL proto-oncogene to 5′ portions of the BCR gene. The product of the fused gene is Bcr-Abl oncoprotein. Bcr-Abl oncoprotein has elevated protein tyrosine kinase activity, and is the cause of Philadelphia chromosome associated leukemias. The Bcr sequence in the fusion protein is crucial for the activation of Abl kinase activity and transforming phenotype of Bcr-Abl oncoprotein. Although the Bcr-Abl oncoprotein has been studied extensively, its normal counterpart, the Bcr protein, has been less studied and its function is not well understood. At this point, Bcr is known to encode a novel serine/threonine protein kinase. In Bcr-Abl positive leukemia cells, we found that the serine kinase activity of Bcr is impaired by tyrosine phosphorylation. Both the Bcr protein sequences within Bcr-Abl and the normal cellular Bcr protein lack serine/threonine kinase activity when they become phosphorylated on tyrosine residues by Bcr-Abl. Therefore, the goal of this study was to investigate the role of Bcr in Bcr-Abl positive leukemia cells. We found that overexpression of Bcr can inhibit Bcr-Abl tyrosine kinase activity, and the inhibition is dependent on its intact serine/threonine kinase function. Using the tet repressible promoter system, we demonstrated that Bcr when induced in Bcr-Abl positive leukemia cells inhibited the Bcr-Abl oncoprotein tyrosine kinase. Furthermore, induction of Bcr also increased the number of cells undergoing apoptosis and inhibited the transforming ability of Bcr-Abl. In contrast to the wild-type Bcr, the kinase-inactive mutant of Bcr (Y328F/Y360F) had no effects on Bcr-Abl tyrosine kinase in cells. Results from other experiments indicated that phosphoserine-containing Bcr sequences within the first exon, which are known to bind to the Abl SH2 domain, are responsible for observed inhibition of the Bcr-Abl tyrosine kinase. Several lines of evidence suggest that the phosphoserine form of Bcr, which binds to the Abl SH2 domain, strongly inhibits the Abl tyrosine kinase domain of Bcr-Abl Previously published findings from our laboratory have also shown that Bcr is phosphorylated on tyrosine residue 177 in Bcr-Abl positive cells and that this form of Bcr recruits the Grb2 adaptor protein, which is known to activate the Ras pathway. These findings implicate Bcr as an effector of Bcr-Abl's oncogenic activity. Therefore based on the findings presented above, we propose a model for dual Function of Bcr in Bcr-Abl positive leukemia cells. Bcr, when active as a serine/threonine kinase and thus autophosphorylating its own serine residues, inhibits Bcr-Abl's oncogenic functions. However, when Ber is tyrosine phosphorylated, its Bcr-Abl inhibitory function is neutralized thus allowing Bcr-Abl to exert its full oncogenic potential. Moreover, tyrosine phosphorylated Bcr would compliment Bcr-Abl's neoplastic effects by the activation of the Ras signaling pathway. ^
Resumo:
The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^
Resumo:
Overexpression of the receptor tyrosine kinase p185ErbB2 confers taxol resistance in breast cancers and activation of p34Cdc2 is required for taxol-induced apoptosis and cytotoxicity. Here, we investigated the underlying mechanisms and found that overexpression of p185 ErbB2 inhibits taxol-induced apoptosis through two branches to inhibit activation of p34Cdc2. ^ Overexpression of p185ErbB2 in MDA-MB-435 cells by transfection transcriptionally upregulated p21Cip1, which associates with p34Cdc2, inhibits taxol-mediated p34Cdc2 activation, delays cell entrance to G2/M phase, and thereby inhibits taxol-induced apoptosis. In p21Cip1 antisense-transfected MDA-MB-435 cells or in p21−/− MEF cells, p185ErbB2 was unable to inhibit taxol-induced apoptosis. Therefore, p21Cip1 participates in the regulation of a G2/M checkpoint that contributes to resistance to taxol-induced apoptosis in p185ErbB2-overexpressing breast cancer cells. ^ Direct phosphorylation on Tyrosine-15 of p34Cdc2 by p185 ErbB2 receptor tyrosine kinase inhibits p34Cdc2 activation. The wild-type p185ErbB2 but not the kinase-defective mutant, when overexpressed in breast cancer cells, can phosphorylate p34Cdc2 on tyrosine (Tyr)15, an inhibitory phosphorylation site of p34 Cdc2. The kinase domain of the ErbB2 receptor was sufficient for binding to p34Cdc2 and directly phosphorylating the recombinant Cdc2. Phosphospecific Cdc2-Tyr15 immunoblot analyses, immunocomplex kinase assays, and phospho-amino acid analyses revealed that p185ErbB2 specifically phosphorylates Cdc2 on Tyr15. Phosphorylation of Cdc2-Tyr15 by ErbB2 is modulated during cell cycle and corresponded with delayed cell entry into G2/M phase. The kinase-defective p185ErbB2, which incapable of phosphorylating Cdc2-Tyr15, failed to inhibit taxol-induced activation and apoptosis, whereas the wild-type and the constitutive-active p185ErbB2 did. Increased Cdc2-Tyr15 phosphorylation was found in Erb132-overexpressing tumors from breast cancer patients. Thus, direct phosphorylation of Cdc2-Tyr15 by p185 ErbB2 RTK in breast cancer cells inhibits taxol-induced p34 Cdc2 activation and apoptosis, thereby conferring taxol resistance. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
The present dataset contain source data for Figure 5b from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. They show integrated responses of double-phosphorylated ERK1 and ERK2 that were calculated for different Epo concentrations for the original model as well as for models with elevated ERK1 or ERK2 levels.
Resumo:
Data contain source data for Figure 5c from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Retrovirally transduced CFU-E cells were incubated with increasing Epo concentrations for 14 h and proliferation was measured by [3H]-thymidine incorporation.
Resumo:
The incidence of inflammatory and autoimmune diseases has increased among developed countries in the past 30 years, creating a demand for the development of effective and economic therapies for these diseases. Interleukin 23 (IL-23) is a pro-inflammatory cytokine whose increased production has been shown to play a key role in the establishment and maintenance of inflammatory and autoimmune diseases in different murine models such as inflammatory bowel disease, psoriasis and experimental autoimmune encephalomyelitis. More importantly, increased levels of IL-23 have been found in biopsies from patients with Crohn’s disease and ulcerative colitis, and psoriasis. The pathological consequences of excessive IL-23 signalling have been linked to its ability to promote the production of interleukin 17 (IL-17), particularly in the subpopulation of CD4 T cells Th17. However, the precise molecular mechanisms by which IL-23 sustains the Th17 response and induces pathogenic effector functions in these cells remain largely unknown. The global objective of the experiments carried out in this work was to determine the effect of IL-23 on the proliferation, survival and IL-17 and interferon gamma (IFN-ɣ) production in Th17 cells. These experiments have shown that IL-23 does not promote proliferation or survival of in vitro generated Th17 cells, and that there is no difference in the production of IL -17 in the absence or presence of IL -23. The IL-23 receptor, like other cytokine receptors, lacks intrinsic enzymatic activity. Instead, IL-23 receptor associates with members of the Janus tyrosine kinase family (Jaks). Cytokine binding to a Jak-associated receptor triggers the activation of the Signal Transducers and Activators of Transcription (STAT) family of transcription factors. Previous work indicated that the IL-23 receptor complex is associated with the tyrosine kinases Jak2 and Tyk2 that promote STAT3 phosphorylation. Subsequent studies showed that IL23 activation of STAT3 induces the expression of the transcription factor RORγt, which is crucial for IL-17 production. This work has explored the IL-23 signalling cascade, determining the optimal conditions for STAT3 activation and demonstrating the activation of other transcription factors such as STAT4, STAT5 and STAT1 that contribute to IL-23-mediated signalling pathways.
Resumo:
Neuronal connections are arranged topographically such that the spatial organization of neurons is preserved by their termini in the targets. During the development of topographic projections, axons initially explore areas much wider than the final targets, and mistargeted axons are pruned later. The molecules regulating these processes are not known. We report here that the ligands of the Eph family tyrosine kinase receptors may regulate both the initial outgrowth and the subsequent pruning of axons. In the presence of ephrins, the outgrowth and branching of the receptor-positive hippocampal axons are enhanced. However, these axons are induced later to degenerate. These observations suggest that the ephrins and their receptors may regulate topographic map formation by stimulating axonal arborization and by pruning mistargeted axons.
Resumo:
Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson–Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor.
Resumo:
The nonreceptor tyrosine kinase Src is expressed at a high level in cells that are specialized for regulated secretion, such as the neuron, and is concentrated on secretory vesicles or at the site of exocytosis. To investigate the possibility that Src may play a role in regulating membrane traffic, we searched for neuronal proteins that will interact with Src. The SH3 domain of Src, but not that of the splice variant N-Src, bound to three proteins from mouse synaptosomes or PC12 cells: dynamin, synapsin Ia, and synapsin Ib. Dynamin and the synapsins coprecipitated with Src from PC12 cell extracts, and they colocalized with a subset of Src in the PC12 cell by immunofluorescence. Neither dynamin nor the synapsins were phosphorylated by Src, suggesting that the interaction of these proteins serves to direct the kinase activity of Src toward other proteins in the vesicle population. In immunoprecipitates containing Src and dynamin, the clathrin adaptor protein α-adaptin was also found. The association of Src and synapsin suggests a role for Src in the life cycle of the synaptic vesicle. The identification of a complex containing Src, dynamin, and α-adaptin indicates that Src may play a more general role in membrane traffic as well.
Resumo:
A protein semisynthesis method—expressed protein ligation—is described that involves the chemoselective addition of a peptide to a recombinant protein. This method was used to ligate a phosphotyrosine peptide to the C terminus of the protein tyrosine kinase C-terminal Src kinase (Csk). By intercepting a thioester generated in the recombinant protein with an N-terminal cysteine containing synthetic peptide, near quantitative chemical ligation of the peptide to the protein was achieved. The semisynthetic tail-phosphorylated Csk showed evidence of an intramolecular phosphotyrosine-Src homology 2 interaction and an unexpected increase in catalytic phosphoryl transfer efficiency toward a physiologically relevant substrate compared with the non-tail-phosphorylated control. This work illustrates that expressed protein ligation is a simple and powerful new method in protein engineering to introduce sequences of unnatural amino acids, posttranslational modifications, and biophysical probes into proteins of any size.