983 resultados para TROPICAL SOUTH-ATLANTIC
Resumo:
Surface sediments from the South American continental margin surrounding tbe Argentine Basin were studied with respect to bulk geochemistry (Caeo) and C ) and grain-size composition (sand/silt/clay relation and terrigenous silt grain-size distribution). The grain-size distributions of the terrigenous silt fraction were unmixed into three end members (EMs), using an end-member modelling algorithm. Three unimodal EMs appear to satisfactorily explain the variations in the data set of the grain-size distributions ofterrigenous silt. The EMs are related to sediment supply by rivers, downslope transport, winnowing, dispersal and re-deposition by currents. The bulk geochemical composition was used to trace the distribution of prominent water masses within the vertical profile. The sediments of the eastern South American continental margin are generally divided into a coarse-grained and carbonate-depleted southwestern part, and a finer-grained and carbonate-rich northeastern part. The transition of both environments is located at the position of the Brazil Malvinas Confluence (BMC). The sediments below the confluence mixing zone of the Malvinas and Brazil Currents and its extensions are characterised by high concentrations of organic carbon, low carbonate contents and high proportions of the intennediate grain-size end member. Tracing these properties, the BMC emerges as a distinct north-south striking feature centered at 52-54°W crossing the continental margin diagonally. Adjacent to this prominent feature in the southwest, the direct detrital sediment discharge of the Rio de la Plata is clearly recognised by a downslope tongue of sand and high proportions of the coarsest EM. A similar coarse grain-size composition extends further south along the continental slope. However, it displays bener sorting due to intense winnowing by the vigorous Malvinas Current. Fine-grained sedimentary deposition zones are located at the southwestern deeper part of the Rio Grande Rise and the southern abyssal Brazil Basin, both within the AABW domain. Less conspicuous winnowing/accumulation panerns are indicated north of the La Plata within the NADW level according to the continental margin topography. We demonstrate that combined bulk geochemical and grain-size properties of surface sediments, unmixed with an end-member algorithm, provide a powerful tool to reconstruct the complex interplay of sedimentology and oceanography along a time slice.
Resumo:
Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1 x 1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF1000), we were able to distinguish between: (1) the coastal environments with highest values (EF1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF1000 increased with primary production up to 350 gCm**-2 yr**-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69), carbon fluxes, and the export fraction remained at low.
Resumo:
This study presents a differentiated carbonate budget for marine surface sediments from the Mid-Atlantic Ridge of the South Atlantic, with results based on carbonate grain-size composition. Upon separation into sand, silt, and clay sub-fractions, the silt grain-size distribution was measured using a SediGraph 5100. We found regionally characteristic grain-size distributions with an overall minimum at 8 µm equivalent spherical diameter (ESD). SEM observations reveal that the coarse particles (>8 µm ESD) are attributed to planktic foraminifers and their fragments, and the fine particles (<8 µm ESD) to coccoliths. On the basis of this division, the regional variation of the contribution of foraminifers and coccoliths to the carbonate budget of the sediments are calculated. Foraminifer carbonate dominates the sediments in mesotropic regions whereas coccoliths contribute most carbonate in oligotrophic regions. The grain size of the coccolith share is constant over water depth, indicating a lower susceptibility for carbonate dissolution compared to foraminifers. Finally, the characteristic grain-size distribution in fine silt (<8 µm ESD) is set into context with the coccolith assemblage counted and biometrically measured using a SEM. The coccoliths present in the silt fraction are predominantly large species (length > 4 µm). Smaller species (length < 4 µm) belong to the clay fraction (<2 µm ESD). The average length of most frequent coccolith species is connected to prominent peaks in grain-size distributions (ESD) with a shape factor. The area below Gaussian distributions fitted to these peaks is suggested as a way to quantitatively estimate the carbonate contribution of single coccolith species more precisely compared to conventional volume estimates. The quantitative division of carbonate into the fraction produced by coccoliths and that secreted by foraminifers enables a more precise estimate for source/sink relations of consumed and released CO2 in the carbon cycle. The allocation of coccolith length and grain size (ESD) suggests size windows for the separation or accumulation of distinct coccolith species in investigations that depend on non to slightly-mixed signals (e.g., isotopic studies).
Resumo:
Terrestrial organic matter (OM) in pelagic sediments is discussed with regard to depositional processes and land-sea interactions in the modern and past glacial/interglacial Equatorial Atlantic. Special emphasis is placed on a critical evaluation of different analytical approaches (C/N, Rock-Eval Pyrolysis, stable carbon isotopes, palynology, organic petrology, and selected biomarkers) which are currently used for the qualitative and quantitative assessment of terrigenous organic carbon. If binary mixing equations are used to calculate terrestrial and marine proportions of organic carbon, we consider the definition of endmember values to be most critical since these values may be biased by a great number of independent controls. A combination of geochemical methods including optical studies (organic petrology and palynology) is therefore suggested to evaluate each individual proxy. Organic geochemical analyses performed on sediments from the modern and Late Quaternary Equatorial Atlantic evidence fluctuations in eolian supply of terrigenous OM related to changes in intensity of the trade winds. Quantification of this organic fraction leads to differing proportions depending on the approach applied, i.e. the organic carbon isotopic composition or maceral analyses. Modern distribution of terrigenous OM reveals a decrease in supply towards the basin contributing less than a fifth of the total OM in pelagic areas. Organic geochemical data indicate that sedimentation in the modern northeastern Brasil Basin is affected by lateral advection of reworked OM probably from southern source areas. Glacial/interglacial deposits from the pelagic Equatorial Atlantic (ODP Site 663), covering isotopic stages 12 and 11, reveal that deposition of terrigenous OM was higher under past glacial conditions, in correspondence to generally enhanced dust fluxes. Proportions of terrigenous OM, however, never exceed 50% of the total OM according to maceral analyses. Other estimates, recently proposed by Verardo and Ruddiman (1996), are considered to be too high probably for analytical reasons. Palynological records in the Equatorial Atlantic parallel dust records. Increased portions of grass pollen suggest the admixture of C4-plant material under modern and past glacial conditions. It is therefore assumed, as one possible interpetation, that C4-plant debris has an effect on sedimentary d13Corg and might explain differences between isotopic and microscopic quantitative estimates. Using the difference between these two records, we calculate that maximum supply of C4-material remains below 20% of the total OM for the deep modern and past glacial/interglacial Equatorial Atlantic.
Resumo:
Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 x 10**8. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol/sec in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol/sec. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23/yr, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2/sec. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.
Resumo:
During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007).