853 resultados para System-analysis
Resumo:
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.
Resumo:
This document outlines the system submitted by the Speech and Audio Research Laboratory at the Queensland University of Technology (QUT) for the Speaker Identity Verification: Application task of EVALITA 2009. This competitive submission consisted of a score-level fusion of three component systems; a joint-factor analysis GMM system and two SVM systems using GLDS and GMM supervector kernels. Development evaluation and post-submission results are presented in this study, demonstrating the effectiveness of this fused system approach. This study highlights the challenges associated with system calibration from limited development data and that mismatch between training and testing conditions continues to be a major source of error in speaker verification technology.
Resumo:
Due to the change in attitudes and lifestyles, people expect to find new partners and friends via various ways now-a-days. Online dating networks create a network for people to meet each other and allow making contact with different objectives of developing a personal, romantic or sexual relationship. Due to the higher expectation of users, online matching companies are trying to adopt recommender systems. However, the existing recommendation techniques such as content-based, collaborative filtering or hybrid techniques focus on users explicit contact behaviors but ignore the implicit relationship among users in the network. This paper proposes a social matching system that uses past relations and user similarities in finding potential matches. The proposed system is evaluated on the dataset collected from an online dating network. Empirical analysis shows that the recommendation success rate has increased to 31% as compared to the baseline success rate of 19%.
Resumo:
This paper presents a method of voice activity detection (VAD) suitable for high noise scenarios, based on the fusion of two complementary systems. The first system uses a proposed non-Gaussianity score (NGS) feature based on normal probability testing. The second system employs a histogram distance score (HDS) feature that detects changes in the signal through conducting a template-based similarity measure between adjacent frames. The decision outputs by the two systems are then merged using an open-by-reconstruction fusion stage. Accuracy of the proposed method was compared to several baseline VAD methods on a database created using real recordings of a variety of high-noise environments.
Resumo:
Auto rickshaws (3-wheelers) are the most sought after transport among the urban and rural poor in India. The assembly of the vehicle involves assemblies of several major components. The L-angle is the component that connects the front panel with the vehicle floor. Current L-angle part has been observed to experience permanent deformation failure over period of time. This paper studies the effect of the addition of stiffeners on the L-angle to increase the strength of the component. A physical model of the L-angle was reversed engineered and modelled in CAD before static loading analysis were carried out on the model using finite element analysis. The modified L-angle fitted with stiffeners was shown to be able to withstand more load compare to previous design.
Resumo:
In this paper, an enriched radial point interpolation method (e-RPIM) is developed the for the determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly augmented by the suitable trigonometric basis functions to reflect the properties of stresses for the crack tip fields. The performance of the enriched RBF meshfree shape functions is firstly investigated to fit different surfaces. The surface fitting results have proven that, comparing with the conventional RBF shape function, the enriched RBF shape function has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a trigonometric surface; and (3) a similar interpolation stability without increase of the condition number of the RBF interpolation matrix. Therefore, it has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF shape function, but also can accurately reflect the properties of stresses for the crack tip fields. The system of equations for the crack analysis is then derived based on the enriched RBF meshfree shape function and the meshfree weak-form. Several problems of linear fracture mechanics are simulated using this newlydeveloped e-RPIM method. It has demonstrated that the present e-RPIM is very accurate and stable, and it has a good potential to develop a practical simulation tool for fracture mechanics problems.
Resumo:
Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.
Resumo:
Dystrobrevin binding protein 1 (DTNBP1), or dysbindin, is thought to be critical in regulating the glutamatergic system. While the dopamine pathway is known to be important in the aetiology of schizophrenia, it seems likely that glutamatergic dysfunction can lead to the development of schizophrenia. DTNBP1 is widely expressed in brain, levels are reduced in brains of schizophrenia patients and a DTNBP1 polymorphism has been associated with reduced brain expression. Despite numerous genetic studies no DTNBP1 polymorphism has been strongly implicated in schizophrenia aetiology. Using a haplotype block-based gene-tagging approach we genotyped 13 SNPs in DTNBP1 to investigate possible associations with DTNBP1 and schizophrenia. Four polymorphisms were found to be significantly associated with schizophrenia. The strongest association was found with an A/C SNP in intron 7 (rs9370822). Homozygotes for the C allele of rs9370822 were more than two and a half times as likely to have schizophrenia compared to controls. The other polymorphisms showed much weaker association and are less likely to be biologically significant. These results suggest that DTNBP1 is a good candidate for schizophrenia risk and rs9370822 is either functionally important or in disequilibrium with a functional SNP, although our observations should be viewed with caution until they are independently replicated.
Resumo:
For ESL teachers working with low-literate adolescents the challenge is to provide instruction in basic literacy capabilities while also realising the benefits of interactive and dialogic pedagogies advocated for the students. In this article we look at literacy pedagogy for refugees of African origin in Australian classrooms. We report on an interview study conducted in an intensive English language school for new arrival adolescents and in three regular secondary schools. Brian Street’s ideological model is used. From this perspective, literacy entails not only technical skills, but also social and cultural ways of making meaning that are embedded within relations of power. The findings showed that teachers were strengthening control of instruction to enable mastery of technical capabilities in basic literacy and genre analysis. We suggest that this approach should be supplemented by a critical approach transforming relations of linguistic power that exclude, marginalise and humiliate the study students in the classroom.
Resumo:
Traditional workflow systems focus on providing support for the control-flow perspective of a business process, with other aspects such as data management and work distribution receiving markedly less attention. A guide to desirable workflow characteristics is provided by the well-known workflow patterns which are derived from a comprehensive survey of contemporary tools and modelling formalisms. In this paper we describe the approach taken to designing the newYAWL workflow system, an offering that aims to provide comprehensive support for the control-flow, data and resource perspectives based on the workflow patterns. The semantics of the newYAWL workflow language are based on Coloured Petri Nets thus facilitating the direct enactment and analysis of processes described in terms of newYAWL language constructs. As part of this discussion, we explain how the operational semantics for each of the language elements are embodied in the newYAWL system and indicate the facilities required to support them in an operational environment. We also review the experiences associated with developing a complete operational design for an offering of this scale using formal techniques.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
Background: Traditional causal modeling of health interventions tends to be linear in nature and lacks multidisciplinarity. Consequently, strategies for exercise prescription in health maintenance are typically group based and focused on the role of a common optimal health status template toward which all individuals should aspire. ----- ----- Materials and methods: In this paper, we discuss inherent weaknesses of traditional methods and introduce an approach exercise training based on neurobiological system variability. The significance of neurobiological system variability in differential learning and training was highlighted.----- ----- Results: Our theoretical analysis revealed differential training as a method by which neurobiological system variability could be harnessed to facilitate health benefits of exercise training. It was observed that this approach emphasizes the importance of using individualized programs in rehabilitation and exercise, rather than group-based strategies to exercise prescription.----- ----- Conclusion: Research is needed on potential benefits of differential training as an approach to physical rehabilitation and exercise prescription that could counteract psychological and physical effects of disease and illness in subelite populations. For example, enhancing the complexity and variability of movement patterns in exercise prescription programs might alleviate effects of depression in nonathletic populations and physical effects of repetitive strain injuries experienced by athletes in elite and developing sport programs.
Resumo:
Background: The Current Population Survey (CPS) and the American Time Use Survey (ATUS) use the 2002 census occupation system to classify workers into 509 separate occupations arranged into 22 major occupational categories. Methods: We describe the methods and rationale for assigning detailed MET estimates to occupations and present population estimates (comparing outputs generated by analysis of previously published summary MET estimates to the detailed MET estimates) of intensities of occupational activity using the 2003 ATUS data comprised of 20,720 respondents, 5,323 (2,917 males and 2,406 females) of whom reported working 6+ hours at their primary occupation on their assigned reporting day. Results: Analysis using the summary MET estimates resulted in 4% more workers in sedentary occupations, 6% more in light, 7% less in moderate, and 3% less in vigorous compared to using the detailed MET estimates. The detailed estimates are more sensitive to identifying individuals who do any occupational activity that is moderate or vigorous in intensity resulting in fewer workers in sedentary and light intensity occupations. Conclusions: Since CPS/ATUS regularly captures occupation data it will be possible to track prevalence of the different intensity levels of occupations. Updates will be required with inevitable adjustments to future occupational classification systems.