974 resultados para Symmetry Ratio Algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictive controllers are often only applicable for open-loop stable systems. In this paper two such controllers are designed to operate on open-loop critically stable systems, each of which is used to find the control inputs for the roll control autopilot of a jet fighter aircraft. It is shown how it is quite possible for good predictive control to be achieved on open-loop critically stable systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new fast, effective and practical model structure construction algorithm for a mixture of experts network system utilising only process data. The algorithm is based on a novel forward constrained regression procedure. Given a full set of the experts as potential model bases, the structure construction algorithm, formed on the forward constrained regression procedure, selects the most significant model base one by one so as to minimise the overall system approximation error at each iteration, while the gate parameters in the mixture of experts network system are accordingly adjusted so as to satisfy the convex constraints required in the derivation of the forward constrained regression procedure. The procedure continues until a proper system model is constructed that utilises some or all of the experts. A pruning algorithm of the consequent mixture of experts network system is also derived to generate an overall parsimonious construction algorithm. Numerical examples are provided to demonstrate the effectiveness of the new algorithms. The mixture of experts network framework can be applied to a wide variety of applications ranging from multiple model controller synthesis to multi-sensor data fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A predictability index was defined as the ratio of the variance of the optimal prediction to the variance of the original time series by Granger and Anderson (1976) and Bhansali (1989). A new simplified algorithm for estimating the predictability index is introduced and the new estimator is shown to be a simple and effective tool in applications of predictability ranking and as an aid in the preliminary analysis of time series. The relationship between the predictability index and the position of the poles and lag p of a time series which can be modelled as an AR(p) model are also investigated. The effectiveness of the algorithm is demonstrated using numerical examples including an application to stock prices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast backward elimination algorithm is introduced based on a QR decomposition and Givens transformations to prune radial-basis-function networks. Nodes are sequentially removed using an increment of error variance criterion. The procedure is terminated by using a prediction risk criterion so as to obtain a model structure with good generalisation properties. The algorithm can be used to postprocess radial basis centres selected using a k-means routine and, in this mode, it provides a hybrid supervised centre selection approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Higher order cumulant analysis is applied to the blind equalization of linear time-invariant (LTI) nonminimum-phase channels. The channel model is moving-average based. To identify the moving average parameters of channels, a higher-order cumulant fitting approach is adopted in which a novel relay algorithm is proposed to obtain the global solution. In addition, the technique incorporates model order determination. The transmitted data are considered as independently identically distributed random variables over some discrete finite set (e.g., set {±1, ±3}). A transformation scheme is suggested so that third-order cumulant analysis can be applied to this type of data. Simulation examples verify the feasibility and potential of the algorithm. Performance is compared with that of the noncumulant-based Sato scheme in terms of the steady state MSE and convergence rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative blind deconvolution algorithm for white-noise driven minimum phase systems is presented and verified by computer simulation. This algorithm uses a cost function based on a novel idea: variance approximation and series decoupling (VASD), and suggests that not all autocorrelation function values are necessary to implement blind deconvolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speed of convergence while training is an important consideration in the use of neural nets. The authors outline a new training algorithm which reduces both the number of iterations and training time required for convergence of multilayer perceptrons, compared to standard back-propagation and conjugate gradient descent algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simple clocking technique to migrate classical synchronous pipelined designs to a synchronous functional-equivalent alternative system in the context of FPGAs. When the new pipelined design runs at the same throughput of the original design, around 30% better mW/MHz ratio was observed in Virtex-based FPGA circuits. The evaluation is done using a simple but representative and practical systolic design as an example. The technique in essence is a simple replacement of the clocking mechanism for the pipe-storage elements; however no extra design effort is needed. The results show that the proposed technique allows immediate power and area-time savings of existing designs rather than exploring potential benefits by a new logic design to the problem using the classic pipeline clocking mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological evidence shows that a diet high in monounsaturated fatty acids (MUFA) but low in saturated fatty acids (SFA) is associated with reduced risk of CHD. The hypocholesterolaemic effect of MUFA is known but there has been little research on the effect of test meal MUFA and SFA composition on postprandial lipid metabolism. The present study investigated the effect of meals containing different proportions of MUFA and SFA on postprandial triacylglycerol and non-esterified fatty acid (NEFA) metabolism. Thirty healthy male volunteers consumed three meals containing equal amounts of fat (40 g), but different proportions of MUFA (12, 17 and 24% energy) in random order. Postprandial plasma triacylglycerol, apolipoprotein B-48, cholesterol, HDL-cholesterol, glucose and insulin concentrations and lipoprotein lipase (EC 3.1.1.34) activity were not significantly different following the three meals which varied in their levels of SFA and MUFA. There was a significant difference in the postprandial NEFA response between meals. The incremental area under the curve of postprandial plasma NEFA concentrations was significantly (P = 0.03) lower following the high-MUFA meal. Regression analysis showed that the non-significant difference in fasting NEFA concentrations was the most important factor determining difference between meals, and that the test meal MUFA content had only a minor effect. In conclusion, varying the levels of MUFA and SFA in test meals has little or no effect on postprandial lipid metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for the optimum tap-length that best balances the complexity and steady-state performance of an adaptive filter has attracted attention recently. Among existing algorithms that can be found in the literature, two of which, namely the segmented filter (SF) and gradient descent (GD) algorithms, are of particular interest as they can search for the optimum tap-length quickly. In this paper, at first, we carefully compare the SF and GD algorithms and show that the two algorithms are equivalent in performance under some constraints, but each has advantages/disadvantages relative to the other. Then, we propose an improved variable tap-length algorithm using the concept of the pseudo fractional tap-length (FT). Updating the tap-length with instantaneous errors in a style similar to that used in the stochastic gradient [or least mean squares (LMS)] algorithm, the proposed FT algorithm not only retains the advantages from both the SF and the GD algorithms but also has significantly less complexity than existing algorithms. Both performance analysis and numerical simulations are given to verify the new proposed algorithm.