906 resultados para Surface-area Reduction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Among the heterogeneous catalysts materials made from niobium show up as an alternative to meet the demand of catalysts for biodiesel production. This study aims to evaluate the potential of a heterogeneous catalyst derived from a complex of niobium in the reaction of methyl esterification of oleic acid. The catalyst was synthesized after calcination at different temperatures of a niobium complex ((NH4)3[NbO(C2O4)3].H2O) generating a niobium oxide nanostructure with a different commercial niobium oxide used to synthesize the complex. The commercial niobium oxide, the complex niobium and niobium catalyst were characterized by thermogravimetry (TG and DTA), surface area analysis (BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing the catalyst has researched morphological and crystallographic indicating a catalytic potential higher than that of commercial niobium oxide characteristics. Factorial with central composite design point, with three factors (calcination temperature, molar ratio of alcohol/oleic acid and mass percentage of catalyst) was performed. Noting that the optimal experimental point was given by the complex calcination temperature of 600°C, a molar ratio alcohol/oleic acid of 3.007/1 and the catalyst mass percentage of 7.998%, with a conversion of 22.44% oleic acid in methyl oleate to 60 min of reaction. We performed a composite linear and quadratic regression to determine an optimal statistical point of the reaction, the temperature of calcination of the complex at 450°C, the molar ratio of alcohol/oleic acid 3.3408/1 and mass percentage of catalyst of 7.6833% . Kinetic modeling to estimate parameters for heterogeneous catalysis it set well the experimental results with a final conversion of 85.01% with 42.38% of catalyst and without catalyst at 240 min reaction was performed. Allowing to evaluate the catalyst catalytic studied has the potential to be used in biodiesel production

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to use a new technology in the treatment of produced wastewaters from oil industry. An unit for treat produced waters called UTMDIF, was designed, installed and operated in an industrial plant for treatment of effluents from oil industry. This unit operates by means of the method of separation of phase inversion and can become a promising alternative to solve the problem of oil/water separation. This method constitutes the basis of the working of a new design of mixersettler of vertical configuration which occupies small surface area. The last characteristic becomes specially important when there is limitation on the lay-out of the plant, for example, over maritime platforms to explore oil. This equipment in a semi-industrial scale treats produced wastewaters contaminated with oil at low concentrations (ranging from 30 to 150 mg/L) and throughputs of 320 m3/d (47,4 m3 m-2 h-1). Good results were obtained in oil/water separation which leads to the necessary specification to discharge those wastewaters. Besides, the non dependence of the efficiency of separation in spite of the salinity of the medium becomes the equipment an attractive new technology to treat wastewaters containing oil at low concentrations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The wet oxidation of organic compounds with CO2 and H2O has been demonstrated to be an efficient technique for effluent treatment. This work focuses on the synthesis, characterization and catalytic performance of Fe-MnO2/CeO2, K-MnO2/CeO2/ palygorskite and Fe/ palygorskite toward the wet oxidative degradation of phenol. The experiments were conducted in a sludge bed reactor with controlled temperature, pressure and stirring speed and sampling of the liquid phase. Experiments were performed on the following operating conditions: temperature 130 ° C, pressure 20.4 atm, catalyst mass concentration of 5 g / L initial concentration of phenol and 0.5 g / L. The catalytic tests were performed in a slurry agitated reactor provided with temperature, pressure and agitation control and reactor liquid sampling. The influences of iron loaded on the support (0.3; 7 and 10%, m/m) and the initial pH of the reactant medium (3.1; 6.8; 8.7) were studied. The iron dispersion on the palygorskite, the phase purity and the elemental composition of the catalyst were evaluated by X-Ray Difraction (XRD), Scanning Electron Microscopy (SEM) and X-Ray Flourescence (XRF). The use of palygorskite as support to increase the surface area was confirmed by the B.E.T. surface results. The phenol degradation curves showed that the Fe3+ over palygorskite when compared with the other materials tested has the best performance toward the (Total Organic carbonic) TOC conversion. The decrease in alkalinity of the reaction medium also favors the conversion of TOC. The maximum conversion obtained from the TOC with the catalyst 3% Fe / palygorskite was around 95% for a reaction time of 60 minutes, while reducing the formation of acids, especially acetic acid. With products obtained from wet oxidation of phenol, hydroquinone, p-benzoquinone, catechol and oxalic acid, identified and quantified by High Performance Liquid Chromatography was possible to propose a reaction mechanism of the process where the phenol is transformed into the homogeneous and heterogeneous phase in the other by applying a kinetic model, Langmuir-Hinshelwood type, with evaluation of kinetic constants of different reactions involved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The groundwater quality has been compromised as a result of the intensification of human activities over the years. Groundwater contamination by nitrate is one of the effects of this degradation, a socio-environmental problem that affects many regions of the world and particular the city of Natal (RN). Developing techniques for nitrate removal in water is intended to eliminate or reduce the concentration of this compound, and those that involve biological processes have produced economic and environmental advantages. This study proposes a technology for biological removal of nitrate in water supply for humans, using the endocarp s coconut as a carbon source and bacteria support. The experiments were performed in pilot scale anoxic, testing different areas of the substrate surface. Results showed high rates nitrate removal during the monitoring period, noting the occurrence of denitrification after the beginning of system operation. The best performance was achieved in the treatment system containing substrate surface area increased, indicating that the decrease in the endocarp size contributed to increased bacterial activity, improving the ability to remove nitrate. About the quality analyzed aspects of water, it was found that the proposed technology has the potential water use for human consumption

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic venous disease (CVD) is evident among the chronic diseases and affects the elderly population and primarily is responsible for leg ulcers in this population. The use of dressings in the care of a venous ulcer is a fundamental part of the treatment for healing, however, evidence to assist in choosing the best dressing is scarce. The main objective of this study was to evaluate the effectiveness of treatment with hydrogel in the healing of venous ulcers using search methods, synthesis of information and statistical research through a systematic review and meta-analysis. Randomized controlled trials were selected in the following databases: CENTRAL; DARE; NHS EED; MEDLINE; EMBASE; CINAHL. Beyond these databases three websites were consulted to identify ongoing studies: ClinicalTrials.gov, OMS ICTRP e ISRCTN. The primary outcomes were analyzed: complete wound healing, incidence of wound infection and the secondary were: changes in ulcer size, time to ulcer healing, recurrence of ulcer, quality of life of participants, pain and costs of treatment. Four studies are currently included in the review with a total of 250 participants. The use of hydrogel appears to be superior to conventional dressing, gauze soaked in saline, for the healing of venous leg ulcers; 16/30 patients showed complete healing of ulcers (RR 5,33, 95%CI [1,73,16,42]). The alginate gel was shown to be more effective when compared to the hydrogel dressing in reduction of the wound area; 61,2% (± 26,2%) with alginate e 19,4% (± 24,3%) with hydrogel at the end of four weeks of treatment. Manuka honey has shown to be similar to the hydrogel dressings in percentage of area reduction. This review demonstrated that there is no evidence available about the effectiveness of the hydrogel compared to other types of dressings on the healing of venous leg ulcers of the lower limbs, thus demonstrating the need of future studies to assist health professionals in choosing the correct dressing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

intense photoluminescence in the visible region was observed at room temperature in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The emission band maximum shows an interesting dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. These findings indicate that the photoluminescence may be directly related to unsatisfied chemical bonds correlated with the high surface area. The Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that samples milled more than 10 h present the formation of nanocrystallites with about 10-20 nm. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of sediment in water bodies presents great environmental importance, because of its ability to adsorb the pollutants, they may facilitate the understanding of the history of the current quality of the water system. Depending on how it is done the collection, analysis can show both a recent contamination as old. The detailed characterization of the sediment may reveal details that can understand how each type of pollutant interacts with the material given its composition. In this work it has developed a systematic methodology to characterize samples of sediment, with the aim to understand how a series of metal is distributed in different size fractions of the sediment. This study was conducted in five samples of sediment (P1, P2, P3a, P3B and P3c) collected in Jundiaí river, one of the most important tributaries of the river Potengi in the region of Macaíba, RN. The characterization was made with the samples previously sieved into meshes with different granulometries (+8#, -8+16#, -16+65# - 65+100#,-100+200#,-200+250# and -250#), using the following techniques: Analysis of specific surface area by BET method, determining the levels of organic matter (OM%) and humidity through the gravimetry and Analysis Thermogravimetric (TG), Infrared Spectroscopy in a Fourier transform (FTIR ), Analysis of X ray diffraction (XRD), analysis of heavy metals by optical emission spectrometry with the Argon Plasma (ICP-OES). The analyzed elements were Al, Cd, Cr, Cu, Fe, Mn, Ni, Zn and P. In addition to the techniques of characterization above, was also made the rebuilding of the samples P1, P2 and P3B in relation to the levels of organic matter and concentration of heavy metals. Then, the results of the recomposed samples were compared with those obtained in crude samples, showing great consistency. The gravimetry, used in determining the levels of organic matter, was not considered an appropriate method because the clay minerals present in the sediment samples analyzed fall apart in the same range of temperature (550-600 0C) used in roasting (600 0C). The results also showed the trend of organic matter and heavy metals to focus on the thin fractions, although the largest concentrations of metals are in intermediate fractions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to analyze the effect of a saline solution on growth and chemical composition of Atriplex nummularia, shrubby plant, absorbing salts used in the diet of animals and the management of water and saline soils. These plant seedlings were planted and grown in a reserved area at the Federal University of Rio Grande do Norte. The plantation was divided into two blocks, in which one of them was irrigated with saline solution with a concentration of 2840 mgL-1 of NaCl and the second group was irrigated with drinking water. After six months, the plants were collected, harvested and divided into three parts: leaf, thin and thick stem. Monthly, dimension measurements were carried out for cataloging the growth of Atriplex. Ion Chromatography (IC) and Optical Emission Spectroscopy Inductively Coupled Plasma (ICP-OES) were used to analyze the chemical composition of the partition plant parts. The results of these analyses revealed that an absorption process of anions and cations by Atriplex nummularia plant during its growth was achieved, in particular by a higher concentration of sodium and chloride ions. Scanning electron microscopy images showed and confirmed the presence of small crystals on the leaf surface. Electrical conductivity and pH measurements of the aerial parts of the plant were carried out and these results showed that the leaf is the plant part where there is a largest concentration of ions. In addition, measurements of specific surface were obtained from irrigated plants with saline solution, achieving higher surface area, in all cases. Plant dimensions obtained monthly showed that the plants irrigated with water grew 5% more than those plants irrigated with saline solution. Based on results obtained, Atriplex plant showed a higher potential to survive and adapt to environments (aquatic or geological) with high levels of salinity and this property can be used as a tool for removing salts/metals from industrial contaminated soils and effluents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG) and infrared spectroscopy (FTIR). The analyses indicated that the synthesis method has employed to obtain materials with high surface area and high acid. The soybean oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. The products obtained in the cracking of soybean oil were analyzed by distillation, acid number, infra-red spectroscopy, density, viscosity, carbon residue, cetane number determination and characterization. The analysis of the products obtained in the presence and in the absence of the SAPO-5 permitted to conclude that all the solids tested presented catalytic activity in the deoxygenation of final products only at the second step of the cracking process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41