1000 resultados para Subwavelength structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hantaviruses, members of the genus Hantavirus in the Bunyaviridae family, are enveloped single-stranded RNA viruses with tri-segmented genome of negative polarity. In humans, hantaviruses cause two diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), which vary in severity depending on the causative agent. Each hantavirus is carried by a specific rodent host and is transmitted to humans through excreta of infected rodents. The genome of hantaviruses encodes four structural proteins: the nucleocapsid protein (N), the glycoproteins (Gn and Gc), and the polymerase (L) and also the nonstructural protein (NSs). This thesis deals with the functional characterization of hantavirus N protein with regard to its structure. Structural studies of the N protein have progressed slowly and the crystal structure of the whole protein is still not available, therefore biochemical assays coupled with bioinformatical modeling proved essential for studying N protein structure and functions. Presumably, during RNA encapsidation, the N protein first forms intermediate trimers and then oligomers. First, we investigated the role of N-terminal domain in the N protein oligomerization. The results suggested that the N-terminal region of the N protein forms a coiled-coil, in which two antiparallel alpha helices interact via their hydrophobic seams. Hydrophobic residues L4, I11, L18, L25 and V32 in the first helix and L44, V51, L58 and L65 in the second helix were crucial for stabilizing the structure. The results were consistent with the head-to-head, tail-to-tail model for hantavirus N protein trimerization. We demonstrated that an intact coiled-coil structure of the N terminus is crucial for the oligomerization capacity of the N protein. We also added new details to the head-to-head, tail-to-tail model of trimerization by suggesting that the initial step is based on interaction(s) between intact intra-molecular coiled-coils of the monomers. We further analyzed the importance of charged aa residues located within the coiled-coil for the N protein oligomerization. To predict the interacting surfaces of the monomers we used an upgraded in silico model of the coiled-coil domain that was docked into a trimer. Next the predicted target residues were mutated. The results obtained using the mammalian two-hybrid assay suggested that conserved charged aa residues within the coiled-coil make a substantial contribution to the N protein oligomerization. This contribution probably involves the formation of interacting surfaces of the N monomers and also stabilization of the coiled-coil via intramolecular ionic bridging. We proposed that the tips of the coiled-coils are the first to come into direct contact and thus initiate tight packing of the three monomers into a compact structure. This was in agreement with the previous results showing that an increase in ionic strength abolished the interaction between N protein molecules. We also showed that residues having the strongest effect on the N protein oligomerization are not scattered randomly throughout the coiled-coil 3D model structure, but form clusters. Next we found evidence for the hantaviral N protein interaction with the cytoplasmic tail of the glycoprotein Gn. In order to study this interaction we used the GST pull-down assay in combination with mutagenesis technique. The results demonstrated that intact, properly folded zinc fingers of the Gn protein cytoplasmic tail as well as the middle domain of the N protein (that includes aa residues 80 248 and supposedly carries the RNA-binding domain) are essential for the interaction. Since hantaviruses do not have a matrix protein that mediates the packaging of the viral RNA in other negatve stranded viruses (NSRV), hantaviral RNPs should be involved in a direct interaction with the intraviral domains of the envelope-embedded glycoproteins. By showing the N-Gn interaction we provided the evidence for one of the crucial steps in the virus replication at which RNPs are directed to the site of the virus assembly. Finally we started analysis of the N protein RNA-binding region, which is supposedly located in the middle domain of the N protein molecule. We developed a model for the initial step of RNA-binding by the hantaviral N protein. We hypothesized that the hantaviral N protein possesses two secondary structure elements that initiate the RNA encapsidation. The results suggest that amino acid residues (172-176) presumably act as a hook to catch vRNA and that the positively charged interaction surface (aa residues 144-160) enhances the initial N-RNA interacation. In conclusion, we elucidated new functions of hantavirus N protein. Using in silico modeling we predicted the domain structure of the protein and using experimental techniques showed that each domain is responsible for executing certain function(s). We showed that intact N terminal coiled-coil domain is crucial for oligomerization and charged residues located on its surface form a interaction surface for the N monomers. The middle domain is essential for interaction with the cytoplasmic tail of the Gn protein and RNA binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dipole moments of di-p-tolyl selenide (1.74 D), di-p-tolyl selenide (1.00 D), di-m-tolyl selenide (1.66 D), di-p-anisyl selenide (2.35 D) and di-p-tolyl selenium dichloride (3.69 D) have been determined in benzene at 35°. The results are analysed in terms of mesomeric effects and internal rotation in these systems. The dipole moments of a few aliphatic selenides have been theoretically evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-and β-Himachalenes, the two major sesquiterpene components of the essential oil of Himalayan deodar (Cedrus deodara, Loud.) are shown to represent a new sequiterpenoid carbon framework. Evidence is presented which establishes their gross structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA sequences containing a stretch of several A:T basepairs without a 5'-TA-3' step are known as A-tracts and have been the subject of extensive investigation because of their unique structural features such as a narrow minor groove and their crucial role in several biological processes. One of the aspects under investigation has been the influence of the 5-methyl group of thymine on the properties of A-tracts. Detailed molecular dynamics simulation studies of the sequences d(CGCAAAUUUGCG) and d(CGCAAATTTGCG) indicate that the presence of the 5-methyl group in thymine increases the frequency of a narrow minor groove conformation, which could facilitate its specific recognition by proteins, and reduce its susceptibility to cleavage by DNase I. The bias toward a wider minor groove in the absence of the thymine 5-methyl group is a static structural feature. Our results also indicate that the presence of the thymine 5-methyl group is necessary for calibrating the backbone conformation and the basepair and dinucleotide step geometry of the core A-tract as well as the flanking CA/TG and the neighboring GC/GC steps, as observed in free and protein-bound DNA. As a consequence, it also fine-tunes the curvature of the longer DNA fragment in which the A-tract is embedded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, characterization and photophysical properties of a 4f-3d mixed metal compound, Gd(H2O)(3)Co[C5N1H3-(COO)(2)](3), are described; the structure is unique, consisting of sheets with large pores ( ca. 7 angstrom diameter) in the sheets and transforms to a perovskite oxide at moderate temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As is well known, when monochromatic light scattered by a liquid is examined under high resolution it exhibits a fine structure: an undisplaced central line and two lines on either side with wavelengths slightly different from that of the incident light. The appearance of the displaced components was first predicted by Brillouin1. On the basis of his theory, the observed displacements of frequency are regarded as a Doppler effect arising from the reflexion of the light wave by the progressive sound waves of thermal origin in the scattering medium. The frequency shift of the so-called Brillouin components is given by the formula where nu and c are the velocities of sound and light in the medium and theta is the angle of scattering. That the effect contemplated by Brillouin does arise in liquids and crystals is now a well-established experimental fact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A synthesis of 3-cyano-3-methyl-7-methoxychroman-4-one is reported. The structure of an “abnormal” product obtained during isomerization (III) with potassium t-butoxide in t-butanol, followed by alkylation with methyl iodide has been proved to be 3-t-butoxy-2-cyano- 2-mehthyl-2′,4′-dimethoxypropiophenone (IVa).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condensation product of 2-carbethoxycyclopentanone and ethyl cyanoacetate is ethyl 2-carbethoxycyclopentylidene cyanoacetate (IIa) and not the one described by Kon and Nanji. Similarly, 2-carbomethoxycyclopentanone and methyl cyanoacetate yield methyl 2-carbomethoxycyclopentylidene cyanoacetate (IIb). The by-products obtained in the first reaction are cyclopentylidene cyanoacetate (IV) and the enamine of 2-carbethoxycyclopentanone (VIa).