998 resultados para Strontium stannate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions are reported for basaltic rocks collected during ODP Leg 127 from the Yamato Basin, a rifted backarc basin in the Japan Sea. The basalts are classified into two groups in terms of Nd isotopic composition: the upper sills at Site 797 are characterized by higher 143Nd/144Nd ratios (0.513083-0.513158, epsilon-Nd = 8.68-10.14) and the basalts from Site 794 and the lower sills at Site 797 have lower 143Nd/144Nd ratios (0.512684-0.512862, epsilon-Nd = 0.90-4.37). All of the basalts show higher Sr isotopic compositions than those of the mantle array, which is attributed to seawater alteration. The basalts with lower Nd isotopic values ranging in age from 20.6 to 17.3 Ma have tapped an enriched subcontinental upper mantle (SCUM) with the minor involvement of a depleted asthenospheric mantle (AM). Subsequent change in composition through the physical replacement of SCUM by AM yielded the basalts of the upper sills of higher Nd isotopic compositions. This event within the upper mantle was associated with the breakup of the overlying lithosphere during the rifting of the Japan Sea backarc basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.