823 resultados para Stress-strain curves
Resumo:
PURPOSE: The use of information and communication technology (ICT) is common in modern working life. ICT demands may give rise to experience of work-related stress. Knowledge about ICT demands in relation to other types of work-related stress and to self-rated health is limited. Consequently, the aim of this study was to examine the association between ICT demands and two types of work-related stress [job strain and effort-reward imbalance (ERI)] and to evaluate the association between these work-related stress measures and self-rated health, in general and in different SES strata. METHODS: This study is based on cross-sectional data from the Swedish Longitudinal Occupational Survey of Health collected in 2014, from 14,873 gainfully employed people. ICT demands, job strain, ERI and self-rated health were analysed as the main measures. Sex, age, SES, lifestyle factors and BMI were used as covariates. RESULTS: ICT demands correlated significantly with the dimensions of the job strain and ERI models, especially with the demands (r = 0.42; p < 0.01) and effort (r = 0.51; p < 0.01) dimensions. ICT demands were associated with suboptimal self-rated health, also after adjustment for age, sex, SES, lifestyle and BMI (OR 1.49 [95 % CI 1.36-1.63]), but job strain (OR 1.93 [95 % CI 1.74-2.14) and ERI (OR 2.15 [95 % CI 1.95-2.35]) showed somewhat stronger associations with suboptimal self-rated health. CONCLUSION: ICT demands are common among people with intermediate and high SES and associated with job strain, ERI and suboptimal self-rated health. ICT demands should thus be acknowledged as a potential stressor of work-related stress in modern working life.
Resumo:
Dans le contexte où les routes non revêtues sont susceptibles de subir des charges importantes, une méthode rigoureuse pour la conception de ces chaussées basée sur des principes mécanistes-empiriques et sur le comportement mécanique des sols support est souhaitable. La conception mécaniste combinée à des lois d’endommagement permet l’optimisation des structures de chaussées non revêtues ainsi que la réduction des coûts de construction et d’entretien. Le but de ce projet est donc la mise au point d’une méthode de conception mécaniste-empirique adaptée aux chaussées non revêtues. Il a été question tout d’abord de mettre au point un code de calcul pour la détermination des contraintes et des déformations dans la chaussée. Ensuite, des lois d’endommagement empiriques pour les chaussées non revêtues ont été développées. Enfin, les méthodes de calcul ont permis la création d’abaques de conception. Le développement du code de calcul a consisté en une modélisation de la chaussée par un système élastique multi-couches. La modélisation a été faite en utilisant la transformation d’Odemark et les équations de Boussinesq pour le calcul des déformations sous la charge. L’élaboration des fonctions de transfert empiriques adaptées aux chaussées non revêtues a également été effectuée. Le développement des fonctions de transfert s’est fait en deux étapes. Tout d’abord, l’établissement de valeurs seuil d’orniérage considérant des niveaux jugés raisonnables de conditions fonctionnelle et structurale de la chaussée. Ensuite, le développement de critères de déformation admissible en associant les déformations théoriques calculées à l’aide du code de calcul à l’endommagement observé sur plusieurs routes en service. Les essais ont eu lieu sur des chaussées typiques reconstituées en laboratoire et soumises à un chargement répété par simulateur de charge. Les chaussées ont été instrumentées pour mesurer la déformation au sommet du sol d’infrastructure et les taux d’endommagements ont été mesurés au cours des essais.
Resumo:
New simpler formulae are derived for the shear of a pair of material elements within the context of infinitesimal strain and finite strain. Also, new formulae are derived for shear stress based on the (symmetric) Cauchy stress and for the rate of shear of a pair of material elements within the rate of strain theory. These formulae are exploited to obtain results and to derive new simpler proofs of familiar classical results. In particular, a very simple short derivation is presented of the classical result of Coulomb and Hopkins on the maximum orthogonal shear stress. © 1992.
Resumo:
The aim of this project was to investigate very small strain elastic behaviour of soils under unsaturated conditions, using bender/extender element (BEE) testing. The behaviour of soils at very small strains has been widely studied under saturated conditions, whereas much less work has been performed on very small strain behaviour under unsaturated conditions. A suction-controlled double wall triaxial apparatus for unsaturated soil testing was modified to incorporate three pairs of BEEs transmitting both shear and compression waves with vertical and horizontal directions of wave transmission and wave polarisation. Various different techniques for measuring wave travel time were investigated in both the time domain and the frequency domain and it was concluded that, at least for the current experimental testing programme, peak-to-first-peak in the time domain was the most reliable technique for determining wave travel time. An experimental test programme was performed on samples of compacted speswhite kaolin clay. Two different forms of compaction were employed (i.e. isotropic and anisotropic). Compacted kaolin soil samples were subjected to constant suction loading and unloading stages at three different values of suction, covering both unsaturated conditions (s= 50kPa and s= 300kPa) and saturated conditions (s=0). Loading and unloading stages were performed at three different values of stress ratio (η=0, η=1 and η=-1 ). In some tests a wetting-drying cycle was performed before or within the loading stage, with the wetting-drying cycles including both wetting-induced swelling and wetting-induced collapse compression. BEE tests were performed at regular intervals throughout all test stages, to measure shear wave velocity Vs and compression wave velocity Vp and hence to determine values of shear modulus G and constrained modulus M. The experimental test programme was designed to investigate how very small strain shear modulus G and constrained modulus M varied with unsaturated state variables, including how anisotropy of these parameters developed either with stress state (stress-induced anisotropy) or with previous straining (strain-induced anisotropy). A new expression has been proposed for the very small strain shear modulus G of an isotropic soil under saturated and unsaturated conditions. This expression relates the variation of G to only mean Bishop’s stress p* and specific volume v, and it converges to a well-established expression for saturated soils as degree of saturation approaches 1. The proposed expression for G is able to predict the variation of G under saturated and unsaturated conditions at least as well as existing expressions from the literature and it is considerably simpler (employing fewer state variables and fewer soil constants). In addition, unlike existing expressions from the literature, the values of soil constants in the proposed new expression can be determined from a saturated test. It appeared that, in the current project at least, any strain-induced anisotropy of very small strain elastic behaviour was relatively modest, with the possible exception of loading in triaxial extension. It was therefore difficult to draw any firm conclusion about evolution of strain-induced anisotropy and whether it depended upon the same aspects of soil fabric as evolution of anisotropy of large strain plastic behaviour. Stress-induced anisotropy of very small strain elastic behaviour was apparent in the experimental test programme. An attempt was made to extend the proposed expression for G to include the effect of stress-induced anisotropy. Interpretation of the experimental results indicated that the value of shear modulus was affected by the values of all three principal Bishop’s stresses (in the direction of wave transmission, the direction of wave polarisation and the third mutually perpendicular direction). However, prediction of stress-induced anisotropy was only partially successful, and it was concluded that the effect of Lode angle was also significant.
Resumo:
Study objective: To examine the relationship between work stress, as indicated by the job strain model and the effort-reward imbalance model, and smoking. Setting: Ten municipalities and 21 hospitals in Finland. Design and Participants: Binary logistic regression models for the prevalence of smoking were related to survey responses of 37 309 female and 8881 male Finnish public sector employees aged 17-65. Separate multinomial logistic regression models were calculated for smoking intensity for 8130 smokers. In addition, binary logistic regression models for ex-smoking were fitted among 16 277 former and current smokers. In all analyses, adjustments were made for age, basic education, occupational status, type of employment and marital status. Main results: Respondents with high effort-reward imbalance or lower rewards were more likely to be smokers. Among smokers, an increased likelihood of higher intensity of smoking was associated with higher job strain and higher effort-reward imbalance and their components such as low job control and low rewards. Smoking intensity was also higher in active jobs in women, in passive jobs and among employees with low effort expenditure. Among former and current smokers, high job strain, high effort-reward imbalance and high job demands were associated with a higher likelihood of being a current smoker. Lower effort was associated with a higher likelihood of ex-smoking. Conclusions: This evidence suggests an association between work stress and smoking and implies that smoking cessation programs may benefit from the taking into account the modification of stressful features of work environment. Key words: effort-reward imbalance; job strain; smoking. Abbreviations: OR, odds ratio; CI, confidence interval; SES, socioeconomic status
Resumo:
The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river
Resumo:
The accumulation of mannosyl-glycerate (MG), the salinity stress response osmolyte of Thermococcales, was investigated as a function of hydrostatic pressure in Thermococcus barophilus strain MP, a hyperthermophilic, piezophilic archaeon isolated from the Snake Pit site (MAR), which grows optimally at 40 MPa. Strain MP accumulated MG primarily in response to salinity stress, but in contrast to other Thermococcales, MG was also accumulated in response to thermal stress. MG accumulation peaked for combined stresses. The accumulation of MG was drastically increased under sub-optimal hydrostatic pressure conditions, demonstrating that low pressure is perceived as a stress in this piezophile, and that the proteome of T. barophilus is low-pressure sensitive. MG accumulation was strongly reduced under supra-optimal pressure conditions clearly demonstrating the structural adaptation of this proteome to high hydrostatic pressure. The lack of MG synthesis only slightly altered the growth characteristics of two different MG synthesis deletion mutants. No shift to other osmolytes was observed. Altogether our observations suggest that the salinity stress response in T. barophilus is not essential and may be under negative selective pressure, similarly to what has been observed for its thermal stress response. Introduction
Resumo:
Introduction. Epidemiological evidence for the association between job-related stress and sexual difficulties in men is largely lacking. Little is known about the factors that may mediate or moderate this relationship. Aim. This study analyzes the association between job-related difficulties and men’s sexual difficulties. Main Outcome Measures. Job-related difficulties were measured by 10 yes/no questions that addressed a range of adverse workplace situations. The experience of sexual difficulties in the past 12 months was assessed by using seven dichotomous indicators developed in the National Study of Sexual Attitudes and Lifestyles (NATSAL) 2000. Method. Analyses were carried out using data from a 2011 online study of Portuguese, Croatian, and Norwegian men (N = 2,112). Multivariate logistic regression and mediation analysis were used to test the hypothesized association. Results. Men with job-related concerns reported lower sexual satisfaction than men without such concerns did (F = 7.53, P < 0.001). Multivariate analysis confirmed the association between job-related and sexual health concerns. The odds of experiencing one or more sexual health difficulties in the past 12 months were about 1.8 times higher among men who reported the highest levels of workplace difficulties than among men who experienced no such difficulties. The odds of reporting sexual health difficulties were significantly reduced by a higher income (adjusted odds ratio [AOR] = 0.87, P < 0.01), emotional intimacy with one’s partner (AOR = 0.93, P < 0.001), having children (AOR = 0.62–0.66, P < 0.01), and country-specific effects (AOR = 1.98–2.22, P < 0.001). In all three countries, the relationship between job-related and sexual health difficulties was mediated by anxiety and depression. Conclusions. The findings suggest that negative mood is the mechanism behind the association between workplace strain and sexual difficulties. Emotional support, such as couple intimacy and fatherhood, can reduce—independently from sociocultural and socioeconomic factors—the risk of sexual health concerns.
Resumo:
The emerging concept of psychobiotics—live microorganisms with a potential mental health benefit—represents a novel approach for the management of stress-related conditions. The majority of studies have focused on animal models. Recent preclinical studies have identified the B. longum 1714 strain as a putative psychobiotic with an impact on stress-related behaviors, physiology and cognitive performance. Whether such preclinical effects could be translated to healthy human volunteers remains unknown. We tested whether psychobiotic consumption could affect the stress response, cognition and brain activity patterns. In a within-participants design, healthy volunteers (N=22) completed cognitive assessments, resting electroencephalography and were exposed to a socially evaluated cold pressor test at baseline, post-placebo and post-psychobiotic. Increases in cortisol output and subjective anxiety in response to the socially evaluated cold pressor test were attenuated. Furthermore, daily reported stress was reduced by psychobiotic consumption. We also observed subtle improvements in hippocampus-dependent visuospatial memory performance, as well as enhanced frontal midline electroencephalographic mobility following psychobiotic consumption. These subtle but clear benefits are in line with the predicted impact from preclinical screening platforms. Our results indicate that consumption of B. longum 1714 is associated with reduced stress and improved memory. Further studies are warranted to evaluate the benefits of this putative psychobiotic in relevant stress-related conditions and to unravel the mechanisms underlying such effects.
Resumo:
Background: Preclinical studies have identified certain probiotics as psychobiotics a live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. An 8 week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). Results: There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.
Resumo:
There is a shortage of experimentally determined strains during sheet metal shearing. These kinds of data are a requisite to validate shearing models and to simulate the shearing process. In this work, strain fields were continuously measured during shearing of a medium and a high strength steel sheet, using digital image correlation. Preliminary studies based on finite element simulations, suggested that the effective surface strains are a good approximation of the bulk strains below the surface. The experiments were performed in a symmetric set-up with large stiffness and stable tool clearances, using various combinations of tool clearance and clamping configuration. Due to large deformations, strains were measured from images captured in a series of steps from shearing start to final fracture. Both the Cauchy and Hencky strain measures were considered, but the difference between these were found negligible with the number of increments used (about 20 to 50). Force-displacement curves were also determined for the various experimental conditions. The measured strain fields displayed a thin band of large strain between the tool edges. Shearing with two clamps resulted in a symmetric strain band whereas there was an extended area with large strains around the tool at the unclamped side when shearing with one clamp. Furthermore, one or two cracks were visible on most of the samples close to the tool edges well before final fracture. The fracture strain was larger for the medium strength material compared with the high-strength material and increased with increasing clearance.
Resumo:
We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.
Resumo:
Two novelties are introduced: (i) a finite-strain semi-implicit integration algorithm compatible with current element technologies and (ii) the application to assumed-strain hexahedra. The Löwdin algo- rithm is adopted to obtain evolving frames applicable to finite strain anisotropy and a weighted least- squares algorithm is used to determine the mixed strain. Löwdin frames are very convenient to model anisotropic materials. Weighted least-squares circumvent the use of internal degrees-of-freedom. Het- erogeneity of element technologies introduce apparently incompatible constitutive requirements. Assumed-strain and enhanced strain elements can be either formulated in terms of the deformation gradient or the Green–Lagrange strain, many of the high-performance shell formulations are corotational and constitutive constraints (such as incompressibility, plane stress and zero normal stress in shells) also depend on specific element formulations. We propose a unified integration algorithm compatible with possibly all element technologies. To assess its validity, a least-squares based hexahedral element is implemented and tested in depth. Basic linear problems as well as 5 finite-strain examples are inspected for correctness and competitive accuracy.