972 resultados para Stone masonry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of anti-roll bars to provide additional roll stiffness and therefore to reduce the trade-off between ride and rollover performance has previously been studied. However, little work has been carried out to investigate the benefits of a switchable roll stiffness. Such a semi-active anti-roll system has the ability to have a low roll stiffness during straight-ahead driving for improved ride performance and high roll stiffness during cornering for improved roll performance. Modelling of such a system is conducted and the model is validated against a semi-active anti-roll system fitted to an experimental vehicle. Experimental and theoretical investigations are used to investigate the performance of such a system with several different strategies employed to switch to the high-stiffness state. The use of an air suspension on the vehicle to roll into corners is also investigated, as is the possibility of exploiting the road layout by allowing the vehicle to be in a low-roll-stiffness configuration during a corner, and then to switch to the high-roll-stiffness configuration midcorner, hence 'locking in' a roll angle. The best rollover performance improvement that was achieved was 12.5 per cent. © IMechE 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study employs an analytical model to describe the rocking response of a masonry arch to in-plane seismic loading. Through evaluation of the rate of energy input to the system, the model reveals the ground motions that cause maximum rocking amplification. An experimental investigation of small-scale masonry arches subjected to past earthquake time histories is used to evaluate the analytical model and to explore arch rocking behaviour. The results demonstrate that rocking amplification can occur, but is highly sensitive to slight variations in the ground motion. Thus, the accuracy to which the arch response can be predicted is brought into perspective. The concept that the primary impulse of an expected ground motion is fundamentally important in predicting arch collapse is evaluated in light of the developed energy approach. Finally, a statistical method is proposed for predicting the probability of arch collapse during seismic loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When considering the potential uptake and utilization of technology management tools by industry, it must be recognized that companies face the difficult challenges of selecting, adopting and integrating individual tools into a toolkit that must be implemented within their current organizational processes and systems. This situation is compounded by the lack of sound advice on integrating well-founded individual tools into a robust toolkit that has the necessary degree of flexibility such that they can be tailored for application to specific problems faced by individual organizations. As an initial stepping stone to offering a toolkit with empirically proven utility, this paper provides a conceptual foundation to the development of toolkits by outlining an underlying philosophical position based on observations from multiple research and commercial collaborations with industry. This stance is underpinned by a set of operationalized principles that can offer guidance to organizations when deciding upon the appropriate form, functions and features that should be embodied by any potential tool/toolkit. For example, a key objective of any tool is to aid decision-making and a core set of powerful, flexible, scaleable and modular tools should be sufficient to allow users to generate, explore, shape and implement possible solutions across a wide array of strategic issues. From our philosophical stance, the preferred mode of engagement is facilitated workshops with a participatory process that enables multiple perspectives and structures the conversation through visual representations in order to manage the cognitive load in the collaborative environment. The generic form of the tools should be configurable for the given context and utilized in a lightweight manner based on the premise of start small and iterate fast. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single molecule force spectroscopy is a technique that can be used to probe the interaction force between individual biomolecular species. We focus our attention on the tip and sample coupling chemistry, which is crucial to these experiments. We utilised a novel approach of mixed self-assembled monolayers of alkanethiols in conjunction with a heterobifunctional crosslinker. The effectiveness of the protocol is demonstrated by probing the biotin-avidin interaction. We measured unbinding forces comparable to previously reported values measured at similar loading rates. Specificity tests also demonstrated a significant decrease in recognition after blocking with free avidin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As operational impacts from buildings are reduced, embodied impacts are increasing. However, the latter are seldom calculated in the UK; when they are, they tend to be calculated after the building has been constructed, or are underestimated by considering only the initial materials stage. In 2010, the UK Government recommended that a standard methodology for calculating embodied impacts of buildings be developed for early stage design decisions. This was followed in 2011-12 by the publication of the European TC350 standards defining the 'cradle to grave' impact of buildings and products through a process Life Cycle Analysis. This paper describes a new whole life embodied carbon and energy of buildings (ECEB) tool, designed as a usable empirical-based approach for early stage design decisions for UK buildings. The tool complies where possible with the TC350 standards. Initial results for a simple masonry construction dwelling are given in terms of the percentage contribution of each life cycle stage. The main difficulty in obtaining these results is found to be the lack of data, and the paper suggests that the construction and manufacturing industries now have a responsibility to develop new data in order to support this task. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When considering the potential uptake and utilization of technology management tools by industry, it must be recognized that companies face the difficult challenges of selecting, adopting and integrating individual tools into a toolkit that must be implemented within their current organizational processes and systems. This situation is compounded by the lack of sound advice on integrating well-founded individual tools into a robust toolkit that has the necessary degree of flexibility such that they can be tailored for application to specific problems faced by individual organizations. As an initial stepping stone to offering a toolkit with empirically proven utility, this paper provides a conceptual foundation to the development of toolkits by outlining an underlying philosophical position based on observations from multiple research and commercial collaborations with industry. This stance is underpinned by a set of operationalized principles that can offer guidance to organizations when deciding upon the appropriate form, functions and features that should be embodied by any potential tool/toolkit. For example, a key objective of any tool is to aid decision-making and a core set of powerful, flexible, scaleable and modular tools should be sufficient to allow users to generate, explore, shape and implement possible solutions across a wide array of strategic issues. From our philosophical stance, the preferred mode of engagement is facilitated workshops with a participatory process that enables multiple perspectives and structures the conversation through visual representations in order to manage the cognitive load in the collaborative environment. The generic form of the tools should be configurable for the given context and utilized in a lightweight manner based on the premise of 'start small and iterate fast'. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to a recent report by the European Commission, within the European Union, the construction and demolition wastes come to at least 450 million tons per year. Roughly 75% of the waste is disposed to landfill, despite its major recycling potential. The bulk constituents of demolition debris are concrete (50-55%) and masonry (30-40%) with only small percentages of other materials such as metals, glass and timber. In Cyprus, at present, recycling of waste materials is practically inexistent and almost the entire demolition waste products are disposed in landfill sites, with all possible economic, technical and environmental impacts. This research paper presents the evaluation and the effective reuse of waste construction materials, such as recycled lime powder (RLP) and recycled concrete aggregates (RCA), disposed to landfill sites in Cyprus, due to the lack of a lucid recycling policy and knowledge. Results show that both RLP and RCA have the potential to produce good quality and robust concrete mixtures both in terms of mechanical and durability performance. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from stone surfaces were collected in pools within four unpolluted hillstreams (two shaded and two unshaded) in monsoonal Hong Kong (lat. 23 degrees N) to elucidate the extent of spatial (within and among streams) and temporal (seasonal) variations in algal biomass and assemblage composition. Sampling continued for over 12 months, incorporating the dry season when streams were at baseflow, and the wet season when spates were frequent. We anticipated that algal biomass would be lower in shaded streams and during the wet season, with associated seasonal differences in assemblage composition or relative abundance of different growth forms (e. g. erect versus prostrate). Benthic chlorophyll a (a proxy for algal biomass) varied among streams from an annual mean of 11.0-22.3 mg m(-2). Dry-season standing stocks were 18% higher than during the wet season when spate-induced disturbance reduced algal standing stocks. Algal biomass varied significantly at the stream scale, but not at the pool scale, and was lower in unshaded streams, where standing stocks may have been limited by high densities of algivorous balitorid loaches (mainly Pseudogastromyzon myersi). An overriding effect of grazers on algal biomass could also have reduced variations resulting from spate-induced disturbance. Significant differences in assemblage composition among streams, which were dominated by diatoms and cyanobacteria (totally 82 taxa) were not systematically related to shading conditions. Seasonal variations in algal assemblages were statistically significant but rather minor, and did not involve major shifts in composition or growth form caused by spate-induced disturbance. The abundance of filamentous cyanobacteria in all the streams may have been due to 'gardening' by balitorid loaches that removed erect or stalked diatoms and favoured cyanobacteria that persist through basal regeneration of filaments. This explanation requires validation through manipulative experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing. One of the consequences is a greater attention to the risk of damage on existing structures. Thus, the assessment of potential damage of surface buildings has become an essential stage in the excavation projects in urban areas (Chapter 1). The current damage risk assessment procedure is based on strong simplifications, which not always lead to conservative results. Object of this thesis is the development of an improved damage classification system, which takes into account the parameters influencing the structural response to settlement, like the non-linear behaviour of masonry and the soil-structure interaction. The methodology used in this research is based on experimental and numerical modelling. The design and execution of an experimental benchmark test representative of the problem allows to identify the principal factors and mechanisms involved. The numerical simulations enable to generalize the results to a broader range of physical scenarios. The methodological choice is based on a critical review of the currently available procedures for the assessment of settlement-induced building damage (Chapter 2). A new experimental test on a 1/10th masonry façade with a rubber base interface is specifically designed to investigate the effect of soil-structure interaction on the tunnelling-induced damage (Chapter 3). The experimental results are used to validate a 2D semi-coupled finite element model for the simulation of the structural response (Chapter 4). The numerical approach, which includes a continuum cracking model for the masonry and a non-linear interface to simulate the soil-structure interaction, is then used to perform a sensitivity study on the effect of openings, material properties, initial damage, initial conditions, normal and shear behaviour of the base interface and applied settlement profile (Chapter 5). The results assess quantitatively the major role played by the normal stiffness of the soil-structure interaction and by the material parameters defining the quasi-brittle masonry behaviour. The limitation of the 2D modelling approach in simulating the progressive 3D displacement field induced by the excavation and the consequent torsional response of the building are overcome by the development of a 3D coupled model of building, foundation, soil and tunnel (Chapter 6). Following the same method applied to the 2D semi-coupled approach, the 3D model is validated through comparison with the monitoring data of a literature case study. The model is then used to carry out a series of parametric analyses on geometrical factors: the aspect ratio of horizontal building dimensions with respect to the tunnel axis direction, the presence of adjacent structures and the position and alignment of the building with respect to the excavation (Chapter 7). The results show the governing effect of the 3D building response, proving the relevance of 3D modelling. Finally, the results from the 2D and 3D parametric analyses are used to set the framework of an overall damage model which correlates the analysed structural features with the risk for the building of being damaged by a certain settlement (Chapter 8). This research therefore provides an increased experimental and numerical understanding of the building response to excavation-induced settlements, and sets the basis for an operational tool for the risk assessment of structural damage (Chapter 9).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous studies on the rigid rocking block have generated a wealth of knowledge about rocking behavior. However, evaluation of more complex rocking systems requires the derivation and solution of complicated equations of motion. This paper investigates the possibility of a unified description of several rocking systems through investigation of rocking mechanisms which describe the masonry wall and the masonry arch. Effective rocking parameters are derived for each of these structures, and the similarity of the rocking behavior is discussed. The error of the proposed approximation, which defines the limitations for this approach, is quantified for the example structures considered. Where appropriate, a unified description of rocking would allow the use of rocking spectra, which would be useful to readily predict the response of a wide array of rocking structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the central part of the Delft railway tunnel project, an underground railway station is being built at very close distance to the existing station building, which is still in operation. Although elaborate sensitivity analyses were made, some unforeseen deformations were encountered during the first phases of the execution process. Especially the installation of temporary sheet pile walls as well as the installation of a huge amount of grout anchor piles resulted in deformations exceeding the predicted final deformations as well as the boundary values defined by a level I limiting tensile strain method (LTSM) approach. In order to ensure the execution process, supplementary analyses were made to predict future deformations, and this for multiple cross sections. These deformations were implemented into a finite element model of the masonry of the building in order to define probable crack formation. This Level II LTSM approach made it possible to increase the initially foreseen deformation criteria and the continuation of the works. Design steps, design models and monitoring results will be explained within this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main causes of failure of historic buildings is represented by the differential settlements of foundations. Finite element analysis provides a useful tool for predicting the consequences of given ground displacements in terms of structural damage and also assesses the need of strengthening techniques. The actual damage classification for buildings subject to settlement bases the assessment of the potential damage on the expected crack pattern of the structure. In this paper, the correlation between the physical description of the damage in terms of crack width and the interpretation of the finite element analysis output is analyzed. Different discrete and continuum crack models are applied to simulate an experiment carried on a scale model of a masonry historical building, the Loggia Palace in Brescia (Italy). Results are discussed and a modified version of the fixed total strain smeared crack model is evaluated, in order to solve the problem related to the calculation of the exact crack width.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.