984 resultados para Standard Reference Intervals
Resumo:
v.4 [Birds] (1885)
Resumo:
v. 1
Resumo:
1922
Resumo:
Background:The applicability of international risk scores in heart surgery (HS) is not well defined in centers outside of North America and Europe.Objective:To evaluate the capacity of the Parsonnet Bernstein 2000 (BP) and EuroSCORE (ES) in predicting in-hospital mortality (IHM) in patients undergoing HS at a reference hospital in Brazil and to identify risk predictors (RP).Methods:Retrospective cohort study of 1,065 patients, with 60.3% patients underwent coronary artery bypass grafting (CABG), 32.7%, valve surgery and 7.0%, CABG combined with valve surgery. Additive and logistic scores models, the area under the ROC (Receiver Operating Characteristic) curve (AUC) and the standardized mortality ratio (SMR) were calculated. Multivariate logistic regression was performed to identify the RP.Results:Overall mortality was 7.8%. The baseline characteristics of the patients were significantly different in relation to BP and ES. AUCs of the logistic and additive BP were 0.72 (95% CI, from 0.66 to 0.78 p = 0.74), and of ES they were 0.73 (95% CI; 0.67 to 0.79 p = 0.80). The calculation of the SMR in BP was 1.59 (95% CI; 1.27 to 1.99) and in ES, 1.43 (95% CI; 1.14 to 1.79). Seven RP of IHM were identified: age, serum creatinine > 2.26 mg/dL, active endocarditis, systolic pulmonary arterial pressure > 60 mmHg, one or more previous HS, CABG combined with valve surgery and diabetes mellitus.Conclusion:Local scores, based on the real situation of local populations, must be developed for better assessment of risk in cardiac surgery.
Resumo:
Background: The use of three-dimensional rotational angiography (3D-RA) to assess patients with congenital heart diseases appears to be a promising technique despite the scarce literature available. Objectives: The objective of this study was to describe our initial experience with 3D-RA and to compare its radiation dose to that of standard two-dimensional angiography (2D-SA). Methods: Between September 2011 and April 2012, 18 patients underwent simultaneous 3D-RA and 2D-SA during diagnostic cardiac catheterization. Radiation dose was assessed using the dose-area-product (DAP). Results: The median patient age and weight were 12.5 years and 47.5 Kg, respectively. The median DAP of each 3D-RA acquisition was 1093µGy.m2 and 190µGy.m2 for each 2D-SA acquisition (p<0.01). In patients weighing more than 45Kg (n=7), this difference was attenuated but still significant (1525 µGy.m2 vs.413µGy.m2, p=0.01). No difference was found between one 3D-RA and three 2D-SA (1525µGy.m2 vs.1238 µGy.m2, p = 0.575) in this population. This difference was significantly higher in patients weighing less than 45Kg (n=9) (713µGy.m2 vs.81µGy.m2, P = 0.008), even when comparing one 3D-RA with three 2D-SA (242µGy.m2, respectively, p<0.008). 3D-RA was extremely useful for the assessment of conduits of univentricular hearts, tortuous branches of the pulmonary artery, and aorta relative to 2D-SA acquisitions. Conclusions: The radiation dose of 3D-RA used in our institution was higher than those previously reported in the literature and this difference was more evident in children. This type of assessment is of paramount importance when starting to perform 3D-RA.
Resumo:
Background: Ivabradine is a novel specific heart rate (HR)-lowering agent that improves event-free survival in patients with heart failure (HF). Objectives: We aimed to evaluate the effect of ivabradine on time domain indices of heart rate variability (HRV) in patients with HF. Methods: Forty-eight patients with compensated HF of nonischemic origin were included. Ivabradine treatment was initiated according to the latest HF guidelines. For HRV analysis, 24-h Holter recording was obtained from each patient before and after 8 weeks of treatment with ivabradine. Results: The mean RR interval, standard deviation of all normal to normal RR intervals (SDNN), the standard deviation of 5-min mean RR intervals (SDANN), the mean of the standard deviation of all normal-to-normal RR intervals for all 5-min segments (SDNN index), the percentage of successive normal RR intervals exceeding 50 ms (pNN50), and the square root of the mean of the squares of the differences between successive normal to normal RR intervals (RMSSD) were low at baseline before treatment with ivabradine. After 8 weeks of treatment with ivabradine, the mean HR (83.6 ± 8.0 and 64.6 ± 5.8, p < 0.0001), mean RR interval (713 ± 74 and 943 ± 101 ms, p < 0.0001), SDNN (56.2 ± 15.7 and 87.9 ± 19.4 ms, p < 0.0001), SDANN (49.5 ± 14.7 and 76.4 ± 19.5 ms, p < 0.0001), SDNN index (24.7 ± 8.8 and 38.3 ± 13.1 ms, p < 0.0001), pNN50 (2.4 ± 1.6 and 3.2 ± 2.2 %, p < 0.0001), and RMSSD (13.5 ± 4.6 and 17.8 ± 5.4 ms, p < 0.0001) substantially improved, which sustained during both when awake and while asleep. Conclusion: Our findings suggest that treatment with ivabradine improves HRV in nonischemic patients with HF.
Resumo:
Background: Hypertension is a public health problem, considering its high prevalence, low control rate and cardiovascular complications. Objective: Evaluate the control of blood pressure (BP) and cardiovascular outcomes in patients enrolled at the Reference Center for Hypertension and Diabetes, located in a medium-sized city in the Midwest Region of Brazil. Methods: Population-based study comparing patients enrolled in the service at the time of their admission and after an average follow-up of five years. Participants were aged ≥18 years and were regularly monitored at the Center up to 6 months before data collection. We assessed demographic variables, BP, body mass index, risk factors, and cardiovascular outcomes. Results: We studied 1,298 individuals, predominantly women (60.9%), and with mean age of 56.7±13.1 years. Over time, there was a significant increase in physical inactivity, alcohol consumption, diabetes, dyslipidemia, and excessive weight. As for cardiovascular outcomes, we observed an increase in stroke and myocardial revascularization, and a lower frequency of chronic renal failure. During follow-up, there was significant improvement in the rate of BP control (from 29.6% to 39.6%; p = 0.001) and 72 deaths, 91.7% of which were due to cardiovascular diseases. Conclusion: Despite considerable improvements in the rate of BP control during follow-up, risk factors worsened and cardiovascular outcomes increased.
Resumo:
Background:Diabetes affects approximately 250 million people in the world. Cardiovascular autonomic neuropathy is a common complication of diabetes that leads to severe postural hypotension, exercise intolerance, and increased incidence of silent myocardial infarction.Objective:To determine the variability of heart rate (HR) and systolic blood pressure (SBP) in recently diagnosed diabetic patients.Methods:The study included 30 patients with a diagnosis of type 2 diabetes of less than 2 years and 30 healthy controls. We used a Finapres® device to measure during five minutes beat-to-beat HR and blood pressure in three experimental conditions: supine position, standing position, and rhythmic breathing at 0.1 Hz. The results were analyzed in the time and frequency domains.Results:In the HR analysis, statistically significant differences were found in the time domain, specifically on short-term values such as standard deviation of NN intervals (SDNN), root mean square of successive differences (RMSSD), and number of pairs of successive NNs that differ by more than 50 ms (pNN50). In the BP analysis, there were no significant differences, but there was a sympathetic dominance in all three conditions. The baroreflex sensitivity (BRS) decreased in patients with early diabetes compared with healthy subjects during the standing maneuver.Conclusions:There is a decrease in HR variability in patients with early type 2 diabetes. No changes were observed in the BP analysis in the supine position, but there were changes in BRS with the standing maneuver, probably due to sympathetic hyperactivity.
Resumo:
Abstract Background: The association between periatrial adiposity and atrial arrhythmias has been shown in previous studies. However, there are not enough available data on the association between epicardial fat tissue (EFT) thickness and parameters of ventricular repolarization. Thus, we aimed to evaluate the association of EFT thickness with indices of ventricular repolarization by using T-peak to T-end (Tp-e) interval and Tp-e/QT ratio. Methods: The present study included 50 patients whose EFT thickness ≥ 9 mm (group 1) and 40 control subjects with EFT thickness < 9 mm (group 2). Transthoracic echocardiographic examination was performed in all participants. QT parameters, Tp-e intervals and Tp-e/QT ratio were measured from the 12-lead electrocardiogram. Results: QTd (41.1 ± 2.5 vs 38.6 ± 3.2, p < 0.001) and corrected QTd (46.7 ± 4.7 vs 43.7 ± 4, p = 0.002) were significantly higher in group 1 when compared to group 2. The Tp-e interval (76.5 ± 6.3, 70.3 ± 6.8, p < 0.001), cTp-e interval (83.1 ± 4.3 vs. 76±4.9, p < 0.001), Tp-e/QT (0.20 ± 0.02 vs. 0.2 ± 0.02, p < 0.001) and Tp-e/QTc ratios (0.2 ± 0.01 vs. 0.18 ± 0.01, p < 0.001) were increased in group 1 in comparison to group 2. Significant positive correlations were found between EFT thickness and Tp-e interval (r = 0.548, p < 0.001), cTp-e interval (r = 0.259, p = 0.01), and Tp-e/QT (r = 0.662, p < 0.001) and Tp-e/QTc ratios (r = 0.560, p < 0.001). Conclusion: The present study shows that Tp-e and cTp-e interval, Tp-e/QT and Tp-e/QTc ratios were increased in subjects with increased EFT, which may suggest an increased risk of ventricular arrhythmia.
Resumo:
Abstract Background: Morbid obesity is directly related to deterioration in cardiorespiratory capacity, including changes in cardiovascular autonomic modulation. Objective: This study aimed to assess the cardiovascular autonomic function in morbidly obese individuals. Methods: Cross-sectional study, including two groups of participants: Group I, composed by 50 morbidly obese subjects, and Group II, composed by 30 nonobese subjects. The autonomic function was assessed by heart rate variability in the time domain (standard deviation of all normal RR intervals [SDNN]; standard deviation of the normal R-R intervals [SDNN]; square root of the mean squared differences of successive R-R intervals [RMSSD]; and the percentage of interval differences of successive R-R intervals greater than 50 milliseconds [pNN50] than the adjacent interval), and in the frequency domain (high frequency [HF]; low frequency [LF]: integration of power spectral density function in high frequency and low frequency ranges respectively). Between-group comparisons were performed by the Student’s t-test, with a level of significance of 5%. Results: Obese subjects had lower values of SDNN (40.0 ± 18.0 ms vs. 70.0 ± 27.8 ms; p = 0.0004), RMSSD (23.7 ± 13.0 ms vs. 40.3 ± 22.4 ms; p = 0.0030), pNN50 (14.8 ± 10.4 % vs. 25.9 ± 7.2%; p = 0.0061) and HF (30.0 ± 17.5 Hz vs. 51.7 ± 25.5 Hz; p = 0.0023) than controls. Mean LF/HF ratio was higher in Group I (5.0 ± 2.8 vs. 1.0 ± 0.9; p = 0.0189), indicating changes in the sympathovagal balance. No statistical difference in LF was observed between Group I and Group II (50.1 ± 30.2 Hz vs. 40.9 ± 23.9 Hz; p = 0.9013). Conclusion: morbidly obese individuals have increased sympathetic activity and reduced parasympathetic activity, featuring cardiovascular autonomic dysfunction.
Resumo:
This paper deals with the estimation of milk production by means of weekly, biweekly, bimonthly observations and also by method known as 6-5-8, where one observation is taken at the 6th week of lactation, another at 5th month and a third one at the 8th month. The data studied were obtained from 72 lactations of the Holstein Friesian breed of the "Escola Superior de Agricultura "Luiz de Queiroz" (Piracicaba), S. Paulo, Brazil), being 6 calvings on each month of year and also 12 first calvings, 12 second calvings, and so on, up to the sixth. The authors criticize the use of "maximum error" to be found in papers dealing with this subject, and also the use of mean deviation. The former is completely supersed and unadvisable and latter, although equivalent, to a certain extent, to the usual standard deviation, has only 87,6% of its efficiency, according to KENDALL (9, pp. 130-131, 10, pp. 6-7). The data obtained were compared with the actual production, obtained by daily control and the deviations observed were studied. Their means and standard deviations are given on the table IV. Inspite of BOX's recent results (11) showing that with equal numbers in all classes a certain inequality of varinces is not important, the autors separated the methods, before carrying out the analysis of variance, thus avoiding to put together methods with too different standard deviations. We compared the three first methods, to begin with (Table VI). Then we carried out the analysis with the four first methods. (Table VII). Finally we compared the two last methods. (Table VIII). These analysis of variance compare the arithmetic means of the deviations by the methods studied, and this is equivalent to compare their biases. So we conclude tht season of calving and order of calving do not effect the biases, and the methods themselves do not differ from this view point, with the exception of method 6-5-8. Another method of attack, maybe preferrable, would be to compare the estimates of the biases with their expected mean under the null hypothesis (zero) by the t-test. We have: 1) Weekley control: t = x - 0/c(x) = 8,59 - 0/ = 1,56 2) Biweekly control: t = 11,20 - 0/6,21= 1,80 3) Monthly control: t = 7,17 - 0/9,48 = 0,76 4) Bimonthly control: t = - 4,66 - 0/17,56 = -0,26 5) Method 6-5-8 t = 144,89 - 0/22,41 = 6,46*** We denote above by three asterisks, significance the 0,1% level of probability. In this way we should conclude that the weekly, biweekly, monthly and bimonthly methods of control may be assumed to be unbiased. The 6-5-8 method is proved to be positively biased, and here the bias equals 5,9% of the mean milk production. The precision of the methods studied may be judged by their standard deviations, or by intervals covering, with a certain probability (95% for example), the deviation x corresponding to an estimate obtained by cne of the methods studied. Since the difference x - x, where x is the mean of the 72 deviations obtained for each method, has a t distribution with mean zero and estimate of standard deviation. s(x - x) = √1+ 1/72 . s = 1.007. s , and the limit of t for the 5% probability, level with 71 degrees of freedom is 1.99, then the interval to be considered is given by x ± 1.99 x 1.007 s = x ± 2.00. s The intervals thus calculated are given on the table IX.