933 resultados para Spinal flexibility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium alginate as the biocompatible polymers. Methods: Implants of methylprednisolone sodium succinate (MPSS) were prepared by molding the drug-loaded polymeric mass obtained after ionotropic gelation method. The prepared implants were evaluated for drug loading, in vitro drug release and in vivo performance in traumatic spinal-injury rat model with paraplegia. Results: All the implant formulations were light pale solid matrix with smooth texture. Implants showed 86.56 ± 2.07 % drug loading. Drug release was 89.29 ± 1.25 % at the end of 7 days. Motor function was evaluated in traumatic spinal injury-induced rats in terms of its movement on the horizontal bar. At the end of 7 days, the test group showed the activity score (4.75 ± 0.02) slightly higher than that of standard (4.62 ± 0.25), but the difference was not statistically different (p > 0.05). Conclusion: MPSS-loaded implants produces good recovery in traumatic spinal-injury rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DEA models have been applied as the benchmarking tool in operations management to empirically account operational and productive efficiency. The wide flexibility in assigning the weights in DEA approach can result on indicators of efficiency who do not take account the relative importance of some inputs. In order to overcome this limitation, in this research we apply the DEA model under restricted weight specification. This model is applied to Spanish hotel companies in order to measure operational efficiency. The restricted weight specification enables us to decrease the influence of assigning unrealistic weights in some units and improve the efficiency estimation and to increase the discriminating potential of the conventional DEA model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal Cord Injury (SCI) is a devastating condition for human and animal health. In SCI particularly, neurons, oligodendrocytes precursor cells, and mature oligodendrocytes are highly vulnerable to the toxic microenvironment after the lesion and susceptible to the elevated levels of noxious stimuli. Thus the regenerative response of the organism in case of SCI is significantly reduced, and only little spontaneous amelioration is observed in lesioned patients during the early phases. This work mainly focuses on studying and characterizing the modification induced by the SCI in a preclinical animal model. We investigated the ECM composition in the spinal cord segments surrounding the primary lesion site at a gene expression level. We found Timp1 and CD44 as a crucial hub in the secondary cascade of SCI in both spinal cord segments surrounding the lesion site. Interestingly, a temporal and anatomical difference in gene expression, indicating a complex regulation of ECM genes after SCI that could be used as a tool for regenerative medicine. We also investigated the modification in synaptic plasticity-related gene expression in spinal and supraspinal areas involved in motor control. We confirmed the anatomical and temporal difference in gene expression in spinal cord tissue. This analysis suggests that a molecular mapping of the lesion-induced modification could be a useful tool for regenerative medicine. In the last part, we evaluated the efficacy of an implantable biopolymer loaded with an anti-inflammatory drug and a pro-myelinating agent on the acute phase of SCI in our preclinical model. We found a consistent reduction of the inflammatory state in the spinal lesion site and the cord's surrounding segments. Moreover, we found increased preservation of the spinal cord tissue with a related upregulation of neuronal and oligodendroglial markers after lesion. Our treatment showed effective ameliorating functional outcome and reducing the lesion extension in the chronic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of concepts is a matter of intense debate in cognitive sciences. While traditional views claim that conceptual knowledge is represented in a unitary symbolic system, recent Embodied and Grounded Cognition theories (EGC) submit the idea that conceptual system is couched in our body and influenced by the environment (Barsalou, 2008). One of the major challenges for EGC is constituted by abstract concepts (ACs), like fantasy. Recently, some EGC proposals addressed this criticism, arguing that the ACs comprise multifaced exemplars that rely on different grounding sources beyond sensorimotor one, including interoception, emotions, language, and sociality (Borghi et al., 2018). However, little is known about how ACs representation varies as a function of life experiences and their use in communication. The theoretical arguments and empirical studies comprised in this dissertation aim to provide evidence on multiple grounding of ACs taking into account their varieties and flexibility. Study I analyzed multiple ratings on a large sample of ACs and identified four distinct subclusters. Study II validated this classification with an interference paradigm involving motor/manual, interoceptive, and linguistic systems during a difficulty rating task. Results confirm that different grounding sources are activated depending on ACs kind. Study III-IV investigate the variability of institutional concepts, showing that the higher the law expertise level, the stronger the concrete/emotional determinants in their representation. Study V introduced a novel interactive task in which abstract and concrete sentences serve as cues to simulate conversation. Analysis of language production revealed that the uncertainty and interactive exchanges increase with abstractness, leading to generating more questions/requests for clarifications with abstract than concrete sentences. Overall, results confirm that ACs are multidimensional, heterogeneous, and flexible constructs and that social and linguistic interactions are crucial to shaping their meanings. Investigating ACs in real-time dialogues may be a promising direction for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to evaluate if spinal cord ischemia (SCI), especially its late presentation, and can be correlated to the results of intraoperative evoked potential monitoring (IOM). Methods. This study is a physician-initiated, retrospective, single-center, non-randomized study. Data from all patients undergoing a thoracoabdominal aortic aneurysm surgical repair (TAAA SR) between January 2016 and March 2020 IOM was collected and analyzed. Results. During the study period, 261 patients underwent TAAA SR with MEP/SSEPs monitoring [190 males, 73%; median age 65 (57-71)]. Thirty-seven patients suffered from SCI, for an overall rate of 14% (permanent 9%). When stratifying patients according to the SCI onset, 18 patients presented with an early (11 permanent) and 19 with a late SCI (<24h) (11 permanent). Of 261 patients undergoing TAAA SR with IOM, 15 were excluded due to changes in the upper extremity motor evoked potentials. For the remaining 246, the association between SCI and IOM was investigated: only irreversible IOM loss without peripheral changes have been found to be a risk factor for late onset SCI (p=.006). Furthermore, given that no statistical differences were found between the two groups when no IOM changes were recorded (p=.679), this situation cannot reliably rule out any SCI in our cohort. Independent risk factors for late spinal cord ischemia onset found at multivariate analysis were smoking history (p=.008), BMI>28 (p=.048) and TAAA extent II (p=.009). The irreversible MEP change without peripheral showed a trend of significance (p=.052). Conclusions. Evoked potential intraoperative monitoring is an important adjunct during thoracoabdominal aortic open repair to predict and possibly prevent spinal cord ischemia. Irreversible IOM loss without peripheral changes was predictive of late SCI, therefore more attention should be paid to the postoperative management of this subgroup of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is a systemic chronic inflammatory disorder that can compromise the cervical spine in up to 80% of the cases. The most common radiological presentations of cervical involvement are atlantoaxial subluxation (AAS), cranial settling and subaxial subluxation (SAS). We performed a systematic review in the PubMed Database of articles published later 2005 to evaluate the prevalence, progression and risk factors for cervical spine involvement in RA patients. Articles were classified according to their level of evidence. Our literature review reported a wide range in the prevalence of cervical spine disease, probably explained by the different studied populations and disease characteristics. Uncontrolled RA is probably the main risk factor for developing a spinal instability. Adequate treatment with DMARD and BA can prevent development of cervical instabilities but did not avoid progression of a pre-existing injury. MRI is the best radiological method for diagnosis cervical spine involvement. AAS is the most common form of RA. Long term radiological follow-up is necessary to diagnosis patients with late instabilities and monitoring progression of diagnosed injuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Subaxial Injury Classification (SLIC) system and severity score has been developed to help surgeons in the decision-making process of treatment of subaxial cervical spine injuries. A detailed description of all potential scored injures of the SLIC is lacking. We performed a systematic review in the PubMed database from 2007 to 2014 to describe the relationship between the scored injuries in the SLIC and their eventual treatment according to the system score. Patients with an SLIC of 1-3 points (conservative treatment) are neurologically intact with the spinous process, laminar or small facet fractures. Patients with compression and burst fractures who are neurologically intact are also treated nonsurgically. Patients with an SLIC of 4 points may have an incomplete spinal cord injury such as a central cord syndrome, compression injuries with incomplete neurologic deficits and burst fractures with complete neurologic deficits. SLIC of 5-10 points includes distraction and rotational injuries, traumatic disc herniation in the setting of a neurological deficit and burst fractures with an incomplete neurologic deficit. The SLIC injury severity score can help surgeons guide fracture treatment. Knowledge of the potential scored injures and their relationships with the SLIC are of paramount importance for spine surgeons who treated subaxial cervical spine injuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the gold standard, and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A retrospective cohort. To report the incidence rates of shoulder injuries diagnosed with magnetic resonance imaging (MRI) in tetraplegic athletes and sedentary tetraplegic individuals. To evaluate whether sport practice increases the risk of shoulder injuries in tetraplegic individuals. Campinas, Sao Paulo, Brazil. Ten tetraplegic athletes with traumatic spinal cord injury were selected among quad rugby athletes and had both the shoulders evaluated by MRI. They were compared with 10 sedentary tetraplegic individuals who were submitted to the same radiological protocol. All athletes were male with a mean age of 32.1 years (range 25-44 years, s.d.=6.44). Time since injury ranged from 6 to 17 years, with a mean value of 9.7 years and s.d. of 3.1 years. All sedentary individuals were male with a mean age of 35.9 years (range 22-47 years, s.d.=8.36). Statistical analysis showed a protective effect of sport in the development of shoulder injuries, with a weak correlation for infraspinatus and subscapularis tendinopathy (P=0.09 and P=0.08, respectively) and muscle atrophy (P=0.08). There was a strong correlation for acromioclavicular joint (ACJ) and labrum injuries (P=0.04), with sedentary individuals at a higher risk for these injuries. Tetraplegic athletes and sedentary individuals have a high incidence of supraspinatus tendinosis, bursitis and ACJ degeneration. Statistical analysis showed that there is a possible protective effect of sport in the development of shoulder injuries. Weak evidence was encountered for infraspinatus and subscapularis tendinopathy and muscle atrophy (P=0.09, P=0.08 and P=0.08, respectively). Strong evidence with P=0.04 suggests that sedentary tetraplegic individuals are at a greater risk for ACJ and labrum injuries.Spinal Cord advance online publication, 17 March 2015; doi:10.1038/sc.2014.248.