932 resultados para Spectral method with domain decomposition
Resumo:
Ocean wind speed and wind direction are estimated simultaneously using the normalized radar cross sections or' corresponding to two neighboring (25-km) blocks, within a given synthetic aperture radar (SAR) image, having slightly different incidence angles. This method is motivated by the methodology used for scatterometer data. The wind direction ambiguity is removed by using the direction closest to that given by a buoy or some other source of information. We demonstrate this method with 11 EN-VISAT Advanced SAR sensor images of the Gulf of Mexico and coastal waters of the North Atlantic. Estimated wind vectors are compared with wind measurements from buoys and scatterometer data. We show that this method can surpass other methods in some cases, even those with insufficient visible wind-induced streaks in the SAR images, to extract wind vectors.
Resumo:
本研究运用RAPD和ISSR两种分子标记技术,对采自山东半岛4个不同地理位置的鼠尾藻(Sargassum thunbergii)和海黍子(S. muticum)种群进行了遗传多样性和遗传结构的研究,从而对其种群间的地理隔离、基因流动水平及其影响因素做出估计和判断,为马尾藻自然资源的保护和开发提供依据。在室内对鼠尾藻有性生殖幼苗的早期发育和生长进行了研究,了解其繁殖生物学特性,为鼠尾藻人工种苗的培育提供依据。主要研究结果如下: 对4个鼠尾藻(S. thunbergii)地理种群的遗传多样性研究中,筛选出了28条RAPD 引物和19条ISSR引物,分别扩增产生了174和125个位点。选用的三种不同指标,即多态位点比率(P%,percentage of polymorphic loci),平均预期杂合度(H,the expected heterozygosity)和 Shannon's 信息多样性指数(I,Shannon's information index),均可反映出鼠尾藻种群内部的遗传多样性呈较低水平。而群体间遗传距离(D,Nei’s unbiased genetic distance)矩阵和固定化指数(FST,the fixation index)矩阵均反映出群体间高度的遗传分化。通过分子变异分析(AMOVA,Analysis of molecular variance)来区分来自种群内部和种群之间的遗传变异,揭示出多数的遗传变异(57.57% 或59.52%)来自于鼠尾藻种群之间。另外,Mantel分析表明,4个鼠尾藻种群间的遗传分化与地理距离呈正相关(r>0.5),遵循传统的IBD(isolation by distance)模式,UPGMA(unweighted pair group method with arithmetic averages)聚类分析也反映出相似的结果。 对4个海黍子(S. muticum)地理种群遗传结构的研究中,筛选出的24条RAPD 引物和19条ISSR引物分别扩增出164和122个位点。遗传多样性评估结果表明,海黍子种群内部存在较低或者中等水平的遗传多样性,而D矩阵和FST 矩阵均显示种群间存在高水平的遗传分化。并且,发现D和FST 矩阵在RAPD和ISSR分析中均具有高且显著的相关性。AMOVA分析显示,种群之间的遗传变异高于种群内部。Mantel分析和UPGMA聚类分析均发现海黍子种群间的遗传分化遵循IBD模式,即与地理隔离呈正相关(r>0.6)。 并且,RAPD和ISSR分析的结果高度一致(r>0.9,P<0.05),均揭示4个海黍子种群之间存在高度的遗传分化。 对鼠尾藻有性生殖幼苗早期生长发育的研究结果表明,其早期发育过程属于马尾藻科(Sargassaceae)中典型的“8核1卵”型。在一定条件下培养两个月后,产生了1~2个小叶,幼苗的长度达2~3毫米。生长实验发现,温度(10, 15, 20, 25℃)和光照强度(9, 18, 44, 88 µEm-2s-1)对培养第一周幼苗的生长均有显著的影响(ANOVA, P<0.01)。在两个月的培养中,幼苗对温度和光强的耐受范围较宽,在10℃~25℃,9~88 µEm-2s-1条件下均可生长,最适温度和光强为25℃,44 µEm-2s-1;低温(10℃)对幼苗的生长有显著抑制。不同光质对幼苗生长的影响显著(P<0.01),相同光强条件下,蓝光和白光相比较,蓝光显然不能满足鼠尾藻幼苗早期生长的需要。
Resumo:
激光诱导击穿光谱技术(LIBS)具有无需样品制备,原位快速分析,可进行实时控制的特点使其在钢铁冶炼控制中具有巨大的实际应用价值。本文以波长为1 064 nm的Nd∶YAG调Q固体激光器为激发光源,CCD为探测器,高合金钢GBW01605—01609系列为样品,在建立的LIBS实验装置上研究激光与合金钢之间的相互作用。系统地研究了观测距离、激光能量对高合金钢样品中激光诱导击穿谱特性的影响,并分析了LIBS信号的时间分辨特性,确定了将LIBS用于合金钢微量元素定量分析时的最佳实验条件。
Resumo:
提出一种新颖的基于MIT规则的自适应Unscented卡尔曼滤波(Unscented Kalman filter,UKF)算法,用来进行参数以及状态的联合估计。针对旋翼飞行机器人执行器提出一种执行器健康因子(Actuator health coefficients,AHCs)的故障模型结构,应用自适应UKF对AHCs参数进行在线估计,将联合估计的状态以及故障参数引入基于模型的反馈线性化控制结构,组成完整的容错控制系统。提出的自适应UKF算法以及容错控制结构经过中科院沈阳自动化研究所ServoHeli-20旋翼无人智能平台数学模型进行仿真试验验证,效果良好。
Resumo:
建立了子机器人的控制模型,提出了分散式控制与集中式控制相结合的复合控制体系。采用动态分配ID号和由ID号确定机器人组中领导者的机制,建立了有领导者的机器人组的协作方法。其中,领导者与监控平台之间采用无线通讯,机器人组内采用CAN(control area network)总线传递控制信号。同时采用组内基于状态表匹配的控制方式。两个机器人组合利用以上机制,通过相互协调完成差速转弯的实验验证了该控制方法的可行性。
Resumo:
特征提取是人脸识别中一个关键步骤。传统的Fisherface人脸识别方法中用样本的类均值和总体均值定义相应的散布矩阵,丢失了样本个体之间的结构信息,本文提出了一种基于原始样本个体结构信息的结构化Fisherface人脸识别方法,最后得到的特征数据中保留了原始样本更多的分布信息。在ORL人脸数据库的实验结果验证了该方法的有效性。
Resumo:
针对纳米操作系统中存在的滞后性质,提出了带Smith预估器的PID控制方法。从理论上解决了纳米操作系统中由于纯滞后性质而引起的系统超调或振荡。从而保证了纳米操作中观测的精度和准确性。
Resumo:
论述了基于Internet的力反馈技术及其相关技术的发展和研究意义 ,综合机器人遥操作控制领域的理论方法 ,结合多媒体技术的最新发展 ,构建了一种基于事件的系统结构及其设计方法 .基于该方法 ,分析了系统的可靠性、稳定性及力媒体传输的透明性 ,并设计了一个基于Internet的力反馈技术的系统实例
Resumo:
根据我国正在研制开发的某深海载人潜水器的特性及其对载人潜水器动力定位控制的要求,采用最优控制方法LQR与递推辨识系统参数相结合的方法———自适应LQR方法进行控制。仿真结果表明这种方法具有良好的控制效果。
Resumo:
对AUV(AutonomousUnderwaterVehicle)自主导航的航位推算算法做了进一步研究并加以改进,以提高其自主导航精度.然后,利用AUV湖试所获得的数据,对本文提出的修正算法进行了验证.结果表明, AUV的自主导航精度得到很大提高,可以用于修正原来的自主导航算法.
Resumo:
In this paper, a new scheduling algorithm for the flexible manufacturing cell is presented, which is a discrete time control method with fixed length control period combining with event interruption. At the flow control level we determine simultaneously the production mix and the proportion of parts to be processed through each route. The simulation results for a hypothetical manufacturing cell are presented.
Resumo:
The practice of geophysical prospecting shows us the complex interior earth. The studies of the complexity play an important role and practical guide for the subsurface structure. At present, the complexity of the earth mainly means lateral and vertical homogeneity, anisotropy and non-linear quality. And the anisotropy and non-linear media studies become the frontier in seismology and exploration seismology. This paper summarizes the development of complexities and presents the forward and inverse in the non-linear and anisotropic media. Firstly, the paper introduces the theory of seismic wave propagation in the non-linear and anisotropic media, the theoretical basis for simulation and inversion research. Secondly, high quality numerical simulation method with little dispersion has been developed to investigate the influence of complexity including anisotropy and non-linear multi-component seismograms. Because most real data in seismology have a single component, we developed two aspects work on anisotropic multi-component imaging. One is prestack reflection migration. The result show that distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation. Moreover, image quality will be improved greatly after considering anisotropy in subsurface layers. The other one is the we take advantage of multi-component data to inversion of the anisotropic parameters jointly seimic reflection travel time and polarization information. Based on these research works, we get the following results: 1.Combing numerical simulation, systematical studies indicate that anisotropy and non-linear seismograms characters are significant to detect cracked belts in the earth and to understand deformation field and mechanism. 2.Based on anisotropic media models, we developed an efficient prestack migration method for subsurface structure and different observation methods seismic data, which improving the imaging quality with VSP, seismograms and real data. 3.Jointly seismic inversion combining seismic anisotropic reflection traveltimes and polarizations data show that the complete wrong inversion and the following explanation will be resulted by ignoring anisotropy.
Resumo:
As the first arrival of seismic phase in deep seismic sounding, Pg is the important data for studying the attributes of the sedimentary layers and the shape of crystalline basement because of its high intensity and reliable detection. Conventionally, the sedimentary cover is expressed as isotropic, linear increasing model in the interpretation of Pg event. Actually, the sedimentary medium should be anisotropic as preferred cracks or fractures and thin layers are common features in the upper crust, so the interpretation of Pg event needs to be taken account of seismic velocity anisotropy. Traveltime calculation is the base of data processing and interpretation. Here, we only study the type of elliptical anisotropy for the poor quality and insufficiency of DSS data. In this thesis, we first investigate the meaning of elliptical anisotropy in the study of crustal structure and attribute, then derive Pg event’s traveltime-offset relationship by assuming a linear increasing velocity model with elliptical anisotropy and present the invert scheme from Pg traveltime-offset dataset to seismic velocity and its anisotropy of shallow crustal structure. We compare the Pg traveltime calculated by our analytic formula with numerical calculating method to test the accuracy. To get the lateral variation of elliptical anisotropy along the profiling, a tomography inversion method with the derived formula is presented, where the profile is divided into rectangles. Anisotropic imaging of crustal structure and attribute is efficient method for crust study. The imaging result can help us interprete the seismic data and discover the attribute of the rock to analyze the interaction between layers. Traveltime calculation is the base of image. Base on the ray tracing equations, the paper present a realization of three dimension of layer model with arbitrary anisotropic type and an example of Pg traveltime calculation in arbitrary anisotropic type is presented. The traveltime calculation method is complex and it only adapts to nonlinear inversion. Perturbation method of travel-time calculation in anisotropy is the linearization approach. It establishes the direct relation between seismic parameters and travetime and it is fit for inversion in anisotropic structural imaging. The thesis presents a P-wave imaging method of layer media for TTI. Southeastern China is an important part of the tectonic framework concerning the continental margin of eastern China and is commonly assumed to comprise the Yangtze block and the Cathaysia block, the two major tectonic units in the region. It’s a typical geological and geophysical zone. In this part, we fit the traveltime of Pg phase by the raytracing numerical method. But the method is not suitable here because the inefficiency of numerical method and the method itself. By the analytic method, we fit the Pg and Sg and get the lateral variation of elliptical anisotropy and then discuss its implication. The northeastern margin of Qinghai-Tibetan plateau is typical because it is the joint area of Eurasian plate and Indian plate and many strong earthquakes have occurred there in recent years.We use the Pg data to get elliptical anisotropic variation and discuss the possible meaning.
Resumo:
There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.
Resumo:
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.