988 resultados para Species differentiation
Resumo:
The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa. in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of pioneer neurons become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination. (C) 2001 Wiley-Liss, Inc.
Resumo:
Pretestis laticaecum is described from the small intestine of the freshwater turtle Emydura krefftil. The new species can be distinguished from its congener P. australianus by the following characters; significantly smaller ovary, main lymph vessels reach anterior to posterior testis, genital atrium in mid-oesophageal region, small vitelline follicles clumped around the ovary and significantly larger caeca overlapping. The, position of this species and related genera in fish, the life cycle of P. australianus and the presence of P. laticaecum in turtles suggest that it is a relatively recent host capture.
Resumo:
Lecithocladium invasor n.sp. is described from the oesophagus of Naso annulatus, N. tuberosus and N. vlamingii on the Great Barrier Reef, Australia. The worms penetrate the oesophageal mucosa and induce chronic transmural nodular granulomas, which expand the full thickness of the oesophageal wall and protrude both into the oesophageal lumen and from the serosal surface. We observed two major types of lesions: large ulcerated, active granulomas, consisting of a central cavity containing a single or multiple live worms; and many smaller chronic fibrous submucosal nodules. Small, identifiable but attenuated, worms and degenerate worm fragments were identified within some chronic nodules. Co-infection of the posterior oesophagus of the same Naso species with Lecithocladium chingi was common. L. chingi is redescribed from N. annulatus, N. brevirostris, N. tuberosus and A vlamingii. Unlike L. invasor n.sp., L. chingi was not associated with significant lesions. The different pathenogenicity of the two species in acanthurid fish is discussed.
Resumo:
Samples of Macropodinium spp. were collected from 3 new macropodid species: from 21 of 28 (75%) black-striped wallabies (Macropus dorsalis); 10 of 11 (91%) swamp wallabies (Wallabia bicolor); and 22 of 43 (51%) Tasmanian pademelons (Thylogale billardierii). The examination of ciliate morphology by silver impregnation and scanning electron microscopy led to the redescription of the genus Macropodinium and the description of 4 new species: Ma. tricresta sp. nov. and Ma. spinosus sp. nov. from M. dorsalis; Ma. maira sp. nov. from T. billardierii; and M. bicolor sp. nov. from W. bicolor; each species was strictly host specific. Cellular orientation was reinterpreted on the basis of vestibular morphology and it is concluded that Macropodinium spp. are laterally rather than dorso-ventrally compressed. The striated groove is thus dorso-ventral rather than lateral. Oral ciliation consisted of up to three bands: an adoral band composed of oblique kineties; a vestibular band of longitudinal kineties; and a preoral band of longitudinal kineties. Somatic ciliation occurred in two longitudinal bands: a dense band composed of several parallel kineties on the left side of the dorso-ventral groove; and a sparse band composed of a single kinety on the right internal side of the dorso-ventral groove. Few structures were homologous to those of other litostome ciliates, and thus the relationship of Macropodinium to other litostomes cannot yet be clearly defined.
Resumo:
The upper Paleozoic miospore genus Spelaeotriletes Neves and Owens, 1966 is reviewed as a morpho-taxonomic entity and vis-a-vis other similarly constructed (pseudosaccate) genera - Geminospora Balme, 1962, Grandispora Hoffmeister, Staplin, and Malloy, 1955, Rhabdosporites Richardson, 1960, and Retispora Staplin, 1960. Detailed studies of numerous, mainly topotype specimens of Spelaeotriletes ybertii (Marques-Toigo, 1970) Playford and Powis, 1979 from the Lower Permian of Uruguay result in its re-diagnosis, in conjunction with a survey of its exclusively Gondwanan occurrences, particularly in South American strata extending from the Upper Carboniferous (Westphalian) into the Lower Permian, and also in Australian strata of approximately equivalent age. The characteristics of other species of Spelaeotriletes reported from upper Paleozoic deposits of Gondwana are discussed, as are their temporal representations in various broad regions of the supercontinent (South America, North Africa, Australia). These species include two, perhaps three, that, like Spelaeotriletes triangulus/arenaceus, are known also from Euramerica - S. balteatus (Playford, 1963) Higgs, 1996, S. pretiosus (Playford, 1964) Utting, 1987, and possibly S. owensii Loboziak and Alpern, 1978. Other species, such as S. benghaziensis Loboziak and Clayton, 1988, S. giganteus Loboziak and Clayton, 1988, and S. vibrissus Playford and Satterthwait, 1988, have, on present knowledge, exclusively Gondwanan occurrences. S. queenslandensis Jones and Truswell. 1992, known only from Upper Carboniferous strata of northeastern Australia, is formally reassigned on sculptural grounds to Grandispora. Not unexpectedly in a paleogeographic perspective, North Africa and South America are more closely allied with each other than with Australia in terms of shared species of Spelaeotriletes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The susceptibility of species of lutjanid, lethrinid and serranid fish to infection by either larval or post-larval (juvenile and adult) specimens of the capsalid monogenean Benedenia lutjani Whittington and Kearn (1993) was examined experimentally. Four species of lutjanids became infected when exposed to larvae of B. lutjani, but three species of lethrinids and four species of serranids were not susceptible to larvae under the same conditions. Variability in the intensity of infection by larvae occurred within and between lutjanid species. Few post-larval specimens of B. lutjani transferred between individuals of the specific host Lutjanus carponotatus (Richardson 1842) in 60-l aquaria and none transferred between specimens of L. carponotatus in a 7,500-l concrete tank. These results indicate that transfer of post-larval B. lutjani between individuals of the specific host is unlikely to occur in the wild. Other lutjanid species did not become infected when exposed to specimens of L. carponotatus infected heavily by post-larval B. lutjani, but two lethrinid species were susceptible to infection under the same conditions. These data indicate that different factors may mediate host-specificity for larval and post-larval B. lutjani.
Resumo:
Acanthoplacatus gen. nov., a new genus of viviparous gyrodactylid, is described from the rns and skin of siganid fishes from the Great Barrier Reef, Australia. The genus is characterized by a muscular, tube-like haptor with 16 marginal hooks on the posterior margin. The ventral lobe of the haptor is located anteriorly relative to the dorsal lobe and contains a pair of hamuli and a ventral bar with posteriorly-projecting ventral bar membrane. A dorsal bar is absent. Five pairs of posterior gland cells surround the posterior terminations of the gut. The male copulatory organ is a muscular, non-eversible bulb with several spines around the distal opening. Species of Acanthoplacatus have a bilateral excretory system consisting of six pairs of flame cells and a pair of excretory bladders. Seven new species are described: Acanthoplacatus adlardi sp. nov. and A. amplihamus sp. nov. from Siganus punctatus (Forster, 1801), A. brauni sp. nov. from S. corallinus (Valenciennes, 1835), A. parvihamus sp. nov. from S. vulpinus (Schlegel and Mueller, 1845), A. puelli sp. nov. from S. puellus Schlegel, 1852, A. shieldsi sp. nov. from S. lineatus (Valenciennes, 1835) and A. sigani sp. nov. from S. fuscescens (Houttuyn, 1782). Species can be discriminated by shape and size of the hamuli, marginal hooks and ventral bar and by male copulatory organ sclerite morphology. Three species (A. brauni sp. nov., A. shieldsi sp. nov. and A. sigani sp. nov.) were assessed for seasonal variation of sclerite size. Ten of thirteen morphological characters showed seasonal variation in size for at least one of the species. The characters were longer in winter except dorsal root tissue cap width. Only one character, marginal hook length, showed significant seasonal variation for all three species. Species of Acanthoplacatus were observed to attach using only the marginal hooks and the role of hamuli in attachment is unclear. The dorsal rn of the host is the preferred site for most species but the anal fin, caudal fin and body surfaces are preferred by some species. Prevalences for species range from 57 to 100%.
Resumo:
Transforming growth factor beta1 treatment of keratinocytes results in a suppression of differentiation, an induction of extracellular matrix production, and a suppression of growth. In this study we utilized markers specific for each of these functions to explore the signaling pathways involved in mediating these transforming-growth-factor-beta1-induced activities. In the first instance, we found that the induction of extracellular matrix production (characterized by 3TP-Lux reporter activity) was induced in both keratinocytes and a keratinocyte-derived carcinoma cell line, SCC25, in a dose-dependent manner. Furthermore, transforming growth factor beta1 also suppressed the differentiation-specific marker gene, transglutaminase type 1, in both keratinocytes and SCC25 cells. In contrast, transforming growth factor beta1 inhibited proliferation of keratinocytes but did not cause growth inhibition in the SCC25 cells. Transforming-growth-factor-beta1-induced growth inhibition of keratinocytes was characterized by decreases in DNA synthesis, accumulation of hypophosphorylated Rb, and the inhibition of the E2F:Rb-responsive promoter, cdc2, and an induction of the p21 promoter. When the negative regulator of transforming growth factor beta1 signaling, SMAD7, was overexpressed in keratinocytes it could prevent transforming-growth-factor-beta1-induced activation of the 3TP-Lux and the p21 promoter. SMAD7 could also prevent the suppression of the transglutaminase type 1 by transforming growth factor beta1 but it could not inhibit the repression of the cdc2 promoter. These data indicate that the induction of 3TP-Lux and p21 and the suppression of transglutaminase type 1 are mediated by a different proximate signaling pathway to that regulating the suppression of the cdc2 gene. Combined, these data indicate that the regulation of transforming growth factor beta1 actions are complex and involve multiple signaling pathways.
Resumo:
Although viperlike in appearance and habit, death adders belong to the Elapidae family of snakes. Systemic envenomation represents a serious medical problem with antivenom, which is raised against Acanthophis antarcticus venom, representing the primary treatment. This study focused on the major Acanthophis variants from Australia and islands in the Indo-Pacific region. Venoms were profiled using liquid chromatography-mass spectrometry, and analyzed for in vitro neurotoxicity (0.3-10 mug/ml), as well as the effectiveness of antivenom. (1-5 units/ml; 10 min prior to the addition of 10 mug/ml venom). The following death adder venoms were examined: A. antarcticus (from separate populations in New South Wales, Queensland, South Australia, and Western Australia), A. hawkei, A. praelongus, A. pyrrhus, A. rugosus, A. wellsi, and venom from an unnamed species from the Indonesian island of Seram. All venoms abolished indirect twitches of the chick isolated biventer cervicis nerve-muscle preparation in a dose-dependent manner. In addition, all venoms blocked responses to exogenous acetylcholine (1 m-M) and carbachol (20 muM), but not KCl (40 mM), suggesting postsynaptic neurotoxicity. Death adder antivenom (1 unit/ml) prevented the neurotoxic effects of A. pyrrhus, A. praelongus, and A. hawkei venoms, although it was markedly less effective against venoms from A. antarcticus (NSW, SA, WA), A. rugosus, A. wellsi, and A. sp. Scram. However, at 5 units/ml, antivenom was effective against all venoms tested. Death adder venoms, including those from A. antarcticus geographic variants, differed not only in their venom composition but also in their neurotoxic activity and susceptibility to antivenom. For the first time toxicological aspects of A. hawkei, A. wellsi, A. rugosus, and A. sp. Seram venoms were studied. (C) 2001 Academic Press.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Resumo:
Despite reports that boron (B) requirements differ among plant species there is a shortage of critical evidence to demonstrate unequivocally whether species differ in internal or external B requirements or both. The present research was conducted to establish the external and internal B requirements of three contrasting species, a woody dicot (marri), an herbaceous dicot (sunflower) and a monocot (wheat) using B-buffered solution culture. Boron-buffered solution culture provided satisfactory control of external B concentrations ranging from 0.04 to 30 muM throughout the 20- (sunflower and wheat) or 40-day (marri) growth period. At low external B concentrations (less than or equal to 0.13 muM), the growth of marri and sunflower was severely depressed but by contrast the vegetative growth of wheat plants was satisfactory and free of B deficiency symptoms. Marri and sunflower plants achieved total maximum shoot growth at greater than or equal to1.2 muM B in solutions while wheat plants did so at greater than or equal to 0.6 muM B. The critical B concentrations (mg kg(-1) dry matter) in the youngest open leaf blades of marri, sunflower and wheat plants were 17.9, 19.7 and 1.2 on 20, 10 and 10 days after transplanting (DAT), respectively. Lower internal and external B requirements of wheat were matched by a lower uptake rate of B compared to marri and sunflower.
Resumo:
Utilization of salt affected wasteland by growing forage shrubs has enormous economic and environmental implication for developing countries like Pakistan, where approximately 6.3 million ha of the land is salt affected. Considering the importance of Atriplex and Maireana species, research has been conducted using their different species on the salt affected soils of Faisalabad. Most of Atriplex and Maireana species survived under the environmental conditions of Faisalabad and gave the good yield in the form of forage. Some of these species are woody and can be used for fuel purposes. Sixteen genotypes of Atriplex and Maireana were tested for their tolerance to waterlogging in order to identify halophytic fodder shrubs suitable for growth on secondary salt-affected and waterlogged farmland. The physiological and morphological responses of the species tested were typical of species with a generally poor tolerance to waterlogging. Despite this, some species (eg A. Amnicola) were surprisingly resistant, surviving up to five months of waterlogging at moderate salinity and high evapotranspirational demand. The most resistant species, A amnicola maintained higher transpiration rates, leaf water potentials and shoot extension rates than most other species during five weeks of waterlogging, and a return to control levels more quickly than other species after plots were drained. Although little morphological adaptation to waterlogged conditions was detected, a shallow and extensive lateral root system and the formation of many short aerenchymatous adventitious roots from procumbent branches appeared to advantage A. Amnicola in an environment highly heterogeneous in salinity and low in oxygen concentration. Shallow fibrous rooted species were quickly killed by waterlogging, although the procumbent branches of some individuals survived as clones if they developed adventitious roots.