958 resultados para Spatially Explicit Simulations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes reaction and thermal front development in porous reservoirs with reacting flows, such as those encountered in shale oil extraction. A set of dimensionless parameters and a 3D code are developed in order to investigate the important physical and chemical variables of such reservoirs when heated by in situ methods. This contribution builds on a 1D model developed for the precursor study to this work. Theory necessary for this study is presented, namely shale decomposition chemical mechanisms, governing equations for multiphase flow in porous media and necessary closure models. Plotting the ratio of the thermal wave speed to the fluid speed allows one to infer that the reaction wave front ends where this ratio is at a minimum. The reaction front follows the thermal front closely, thus allowing assumptions to be made about the extent of decomposition solely by looking at thermal wave progression. Furthermore, this sensitivity analysis showed that a certain minimum permeability is required in order to ensure the formation of a traveling thermal wave. It was found that by studying the non-dimensional governing parameters of the system one can ascribe characteristic values for these parameters for given initial and boundary conditions. This allows one to roughly predict the performance of a particular method on a particular reservoir given approximate values for initial and boundary conditions. Channelling and flow blockage due to carbon residue buildup impeded each method's performance. Blockage was found to be a result of imbalanced heating. Copyright 2012, Society of Petroleum Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use low temperature spatially resolved photoluminescence imaging to study optical properties and electronic states of single CdS and GaAs/AlGaAs core-shell nanowires. © 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a slug of dry sand particles against a metallic sandwich beam or circular sandwich plate is analysed in order to aid the design of sandwich panels for shock mitigation. The sand particles interact via a combined linear-spring-and-dashpot law whereas the face sheets and compressible core of the sandwich beam and plate are treated as rate-sensitive, elastic-plastic solids. The majority of the calculations are performed in two dimensions and entail the transverse impact of end-clamped monolithic and sandwich beams, with plane strain conditions imposed. The sand slug is of rectangular shape and comprises a random loose packing of identical, circular cylindrical particles. These calculations reveal that loading due to the sand is primarily inertial in nature with negligible fluid-structure interaction: the momentum transmitted to the beam is approximately equal to that of the incoming sand slug. For a slug of given incoming momentum, the dynamic deflection of the beam increases with decreasing duration of sand-loading until the impulsive limit is attained. Sandwich beams with thick, strong cores significantly outperform monolithic beams of equal areal mass. This performance enhancement is traced to the "sandwich effect" whereby the sandwich beams have a higher bending strength than that of the monolithic beams. Three-dimensional (3D) calculations are also performed such that the sand slug has the shape of a circular cylindrical column of finite height, and contains spherical sand particles. The 3D slug impacts a circular monolithic plate or sandwich plate and we show that sandwich plates with thick strong cores again outperform monolithic plates of equal areal mass. Finally, we demonstrate that impact by sand particles is equivalent to impact by a crushable foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally, yet give predictions to within 5% of the full discrete particle calculations for the monolithic and sandwich beams and plates. These foam projectile calculations suggest that metallic foam projectiles can be used to simulate the loading by sand particles within a laboratory setting. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of fluid-structure interaction simulations of an aerodynamic tension-cone supersonic decelerator prototype intended for large mass payload deployment in planetary explorations are discussed. The fluid-structure interaction computations combine large deformation analysis of thin shells with large-eddy simulation of compressible turbulent flows using a loosely coupled approach to enable quantification of the dynamics of the vehicle. The simulation results are compared with experiments carried out at the NASA Glenn Research Center. Reasonably good agreement between the simulations and the experiment is observed throughout a deflation cycle. The simulations help to illuminate the details of the dynamic progressive buckling of the tension-cone decelerator that ultimately results in the collapse of the structure as the inflation pressure is decreased. Furthermore, the tension-cone decelerator exhibits a transient oscillatory behavior under impulsive loading that ultimately dies out. The frequency of these oscillations was determined to be related to the acoustic time scale in the compressed subsonic region between the bow shock and the structure. As shown, when the natural frequency of the structure and the frequency of the compressed subsonic region approximately match, the decelerator exhibits relatively large nonaxisymetric oscillations. The observed response appears to be a fluid-structure interaction resonance resulting from an acoustic chamber (pistonlike) mode exciting the structure. Copyright © 2013 by Christopher Porter, R. Mark Rennie, Eric J. Jumper.