863 resultados para Spatial Durbin model
Resumo:
Starting from a continuum description, we study the nonequilibrium roughening of a thermal re-emission model for etching in one and two spatial dimensions. Using standard analytical techniques, we map our problem to a generalized version of an earlier nonlocal KPZ (Kardar-Parisi-Zhang) model. In 2 + 1 dimensions, the values of the roughness and the dynamic exponents calculated from our theory go like α ≈ z ≈ 1 and in 1 + 1 dimensions, the exponents resemble the KPZ values for low vapor pressure, supporting experimental results. Interestingly, Galilean invariance is maintained throughout.
Resumo:
Purpose: To evaluate lenses produced by excimer laser ablation of poly(methyl methacrylate) (PMMA) plates. Setting: University research laboratory. Methods: Two Nidek EC-5000 scanning-slit excimer laser systems were used to ablate plane-parallel plates of PMMA. The ablated lenses were examined by focimetry, interferometry, and mechanical surface profiling. Results: The spherical optical powers of the lenses matched the expected values, but the cylindrical powers were generally lower than intended. Interferometry revealed marked irregularity in the surface of negative corrections, which often had a positive “island” at their center. Positive corrections were generally smoother. These findings were supported by the results of mechanical profiling. Contrast sensitivity measurements carried out when observing through ablated lenses whose power had been neutralized with a suitable spectacle lens of opposite sign confirmed that the surface irregularities of the ablated lenses markedly reduced contrast sensitivity over a range of spatial frequencies. Conclusion: Improvements in beam delivery systems seem desirable.
Resumo:
The importance to solve the problem of spatial-temporal dynamics analysis in the system of economic security of different subjects of economic management is substantiated. Various methods and approaches for carrying out analysis of spatial-temporal dynamics in the system of economic security are considered. The basis of the generalized analysis of spatial-temporal dynamics in economic systems is offered.
Resumo:
A semi-quantitative model is put forward elucidating the role of spatial inhomogeneity of charge carrier mobility in organic field-effect transistors. The model, based on electrostatic arguments, allows estimating the effective thickness of the conducting channel and its changes in function of source-drain and gate voltages. Local mobility gradients in the direction perpendicular to the insulator/semiconductor interface translate into voltage dependences of the average carrier mobility in the channel, resulting in positive or negative deviations of current-voltage characteristics from their expected shapes. The proposed effect supplements those described in the literature, i.e., density-dependent mobility of charge carriers, short-channel effects, and contribution of contact resistance.
Resumo:
The quantization scheme is suggested for a spatially inhomogeneous 1+1 Bianchi I model. The scheme consists in quantization of the equations of motion and gives the operator (so called quasi-Heisenberg) equations describing explicit evolution of a system. Some particular gauge suitable for quantization is proposed. The Wheeler-DeWitt equation is considered in the vicinity of zero scale factor and it is used to construct a space where the quasi-Heisenberg operators act. Spatial discretization as a UV regularization procedure is suggested for the equations of motion.
Resumo:
The conventional, geometrically lumped description of the physical processes inside a high shear granulator is not reliable for process design and scale-up. In this study, a compartmental Population Balance Model (PBM) with spatial dependence is developed and validated in two lab-scale high shear granulation processes using a 1.9L MiPro granulator and 4L DIOSNA granulator. The compartmental structure is built using a heuristic approach based on computational fluid dynamics (CFD) analysis, which includes the overall flow pattern, velocity and solids concentration. The constant volume Monte Carlo approach is implemented to solve the multi-compartment population balance equations. Different spatial dependent mechanisms are included in the compartmental PBM to describe granule growth. It is concluded that for both cases (low and high liquid content), the adjustment of parameters (e.g. layering, coalescence and breakage rate) can provide a quantitative prediction of the granulation process.
Resumo:
Simple features such as edges are the building blocks of spatial vision, and so I ask: how arevisual features and their properties (location, blur and contrast) derived from the responses ofspatial filters in early vision; how are these elementary visual signals combined across the twoeyes; and when are they not combined? Our psychophysical evidence from blur-matchingexperiments strongly supports a model in which edges are found at the spatial peaks ofresponse of odd-symmetric receptive fields (gradient operators), and their blur B is givenby the spatial scale of the most active operator. This model can explain some surprisingaspects of blur perception: edges look sharper when they are low contrast, and when theirlength is made shorter. Our experiments on binocular fusion of blurred edges show that singlevision is maintained for disparities up to about 2.5*B, followed by diplopia or suppression ofone edge at larger disparities. Edges of opposite polarity never fuse. Fusion may be served bybinocular combination of monocular gradient operators, but that combination - involvingbinocular summation and interocular suppression - is not completely understood.In particular, linear summation (supported by psychophysical and physiological evidence)predicts that fused edges should look more blurred with increasing disparity (up to 2.5*B),but results surprisingly show that edge blur appears constant across all disparities, whetherfused or diplopic. Finally, when edges of very different blur are shown to the left and righteyes fusion may not occur, but perceived blur is not simply given by the sharper edge, nor bythe higher contrast. Instead, it is the ratio of contrast to blur that matters: the edge with theAbstracts 1237steeper gradient dominates perception. The early stages of binocular spatial vision speak thelanguage of luminance gradients.
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
Since the Morris worm was released in 1988, Internet worms continue to be one of top security threats. For example, the Conficker worm infected 9 to 15 million machines in early 2009 and shut down the service of some critical government and medical networks. Moreover, it constructed a massive peer-to-peer (P2P) botnet. Botnets are zombie networks controlled by attackers setting out coordinated attacks. In recent years, botnets have become the number one threat to the Internet. The objective of this research is to characterize spatial-temporal infection structures of Internet worms, and apply the observations to study P2P-based botnets formed by worm infection. First, we infer temporal characteristics of the Internet worm infection structure, i.e., the host infection time and the worm infection sequence, and thus pinpoint patient zero or initially infected hosts. Specifically, we apply statistical estimation techniques on Darknet observations. We show analytically and empirically that our proposed estimators can significantly improve the inference accuracy. Second, we reveal two key spatial characteristics of the Internet worm infection structure, i.e., the number of children and the generation of the underlying tree topology formed by worm infection. Specifically, we apply probabilistic modeling methods and a sequential growth model. We show analytically and empirically that the number of children has asymptotically a geometric distribution with parameter 0.5, and the generation follows closely a Poisson distribution. Finally, we evaluate bot detection strategies and effects of user defenses in P2P-based botnets formed by worm infection. Specifically, we apply the observations of the number of children and demonstrate analytically and empirically that targeted detection that focuses on the nodes with the largest number of children is an efficient way to expose bots. However, we also point out that future botnets may self-stop scanning to weaken targeted detection, without greatly slowing down the speed of worm infection. We then extend the worm spatial infection structure and show empirically that user defenses, e.g. , patching or cleaning, can significantly mitigate the robustness and the effectiveness of P2P-based botnets. To counterattack, we evaluate a simple measure by future botnets that enhances topology robustness through worm re-infection.
Resumo:
The major objectives of this dissertation were to develop optimal spatial techniques to model the spatial-temporal changes of the lake sediments and their nutrients from 1988 to 2006, and evaluate the impacts of the hurricanes occurred during 1998–2006. Mud zone reduced about 10.5% from 1988 to 1998, and increased about 6.2% from 1998 to 2006. Mud areas, volumes and weight were calculated using validated Kriging models. From 1988 to 1998, mud thicknesses increased up to 26 cm in the central lake area. The mud area and volume decreased about 13.78% and 10.26%, respectively. From 1998 to 2006, mud depths declined by up to 41 cm in the central lake area, mud volume reduced about 27%. Mud weight increased up to 29.32% from 1988 to 1998, but reduced over 20% from 1998 to 2006. The reduction of mud sediments is likely due to re-suspension and redistribution by waves and currents produced by large storm events, particularly Hurricanes Frances and Jeanne in 2004 and Wilma in 2005. Regression, kriging, geographically weighted regression (GWR) and regression-kriging models have been calibrated and validated for the spatial analysis of the sediments TP and TN of the lake. GWR models provide the most accurate predictions for TP and TN based on model performance and error analysis. TP values declined from an average of 651 to 593 mg/kg from 1998 to 2006, especially in the lake’s western and southern regions. From 1988 to 1998, TP declined in the northern and southern areas, and increased in the central-western part of the lake. The TP weights increased about 37.99%–43.68% from 1988 to 1998 and decreased about 29.72%–34.42% from 1998 to 2006. From 1988 to 1998, TN decreased in most areas, especially in the northern and southern lake regions; western littoral zone had the biggest increase, up to 40,000 mg/kg. From 1998 to 2006, TN declined from an average of 9,363 to 8,926 mg/kg, especially in the central and southern regions. The biggest increases occurred in the northern lake and southern edge areas. TN weights increased about 15%–16.2% from 1988 to 1998, and decreased about 7%–11% from 1998 to 2006.
Resumo:
Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: “Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000”. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReduce—a widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.
Resumo:
We developed a conceptual ecological model (CEM) for invasive species to help understand the role invasive exotics have in ecosystem ecology and their impacts on restoration activities. Our model, which can be applied to any invasive species, grew from the eco-regional conceptual models developed for Everglades restoration. These models identify ecological drivers, stressors, effects and attributes; we integrated the unique aspects of exotic species invasions and effects into this conceptual hierarchy. We used the model to help identify important aspects of invasion in the development of an invasive exotic plant ecological indicator, which is described a companion paper in this special issue journal. A key aspect of the CEM is that it is a general ecological model that can be tailored to specific cases and species, as the details of any invasion are unique to that invasive species. Our model encompasses the temporal and spatial changes that characterize invasion, identifying the general conditions that allow a species to become invasive in a de novo environment; it then enumerates the possible effects exotic species may have collectively and individually at varying scales and for different ecosystem properties, once a species becomes invasive. The model provides suites of characteristics and processes, as well as hypothesized causal relationships to consider when thinking about the effects or potential effects of an invasive exotic and how restoration efforts will affect these characteristics and processes. In order to illustrate how to use the model as a blueprint for applying a similar approach to other invasive species and ecosystems, we give two examples of using this conceptual model to evaluate the status of two south Florida invasive exotic plant species (melaleuca and Old World climbing fern) and consider potential impacts of these invasive species on restoration.
Resumo:
Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.
Resumo:
A method to estimate speed of free-ranging fishes using a passive sampling device is described and illustrated with data from the Everglades, U.S.A. Catch per unit effort (CPUE) from minnow traps embedded in drift fences was treated as an encounter rate and used to estimate speed, when combined with an independent estimate of density obtained by use of throw traps that enclose 1 m2 of marsh habitat. Underwater video was used to evaluate capture efficiency and species-specific bias of minnow traps and two sampling studies were used to estimate trap saturation and diel-movement patterns; these results were used to optimize sampling and derive correction factors to adjust species-specific encounter rates for bias and capture efficiency. Sailfin mollies Poecilia latipinna displayed a high frequency of escape from traps, whereas eastern mosquitofish Gambusia holbrooki were most likely to avoid a trap once they encountered it; dollar sunfish Lepomis marginatus were least likely to avoid the trap once they encountered it or to escape once they were captured. Length of sampling and time of day affected CPUE; fishes generally had a very low retention rate over a 24 h sample time and only the Everglades pygmy sunfish Elassoma evergladei were commonly captured at night. Dispersal speed of fishes in the Florida Everglades, U.S.A., was shown to vary seasonally and among species, ranging from 0· 05 to 0· 15 m s−1 for small poeciliids and fundulids to 0· 1 to 1· 8 m s−1 for L. marginatus. Speed was generally highest late in the wet season and lowest in the dry season, possibly tied to dispersal behaviours linked to finding and remaining in dry-season refuges. These speed estimates can be used to estimate the diffusive movement rate, which is commonly employed in spatial ecological models.
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.