980 resultados para Soil surface spatial configuration
(Appendix 5-1) Sample list and field descriptions of surface samples for soil organic matter studies
Resumo:
The Fractal Image Informatics toolbox (Oleschko et al., 2008 a; Torres-Argüelles et al., 2010) was applied to extract, classify and model the topological structure and dynamics of surface roughness in two highly eroded catchments of Mexico. Both areas are affected by gully erosion (Sidorchuk, 2005) and characterized by avalanche-like matter transport. Five contrasting morphological patterns were distinguished across the slope of the bare eroded surface of Faeozem (Queretaro State) while only one (apparently independent on the slope) roughness pattern was documented for Andosol (Michoacan State). We called these patterns ?the roughness clusters? and compared them in terms of metrizability, continuity, compactness, topological connectedness (global and local) and invariance, separability, and degree of ramification (Weyl, 1937). All mentioned topological measurands were correlated with the variance, skewness and kurtosis of the gray-level distribution of digital images. The morphology0 spatial dynamics of roughness clusters was measured and mapped with high precision in terms of fractal descriptors. The Hurst exponent was especially suitable to distinguish between the structure of ?turtle shell? and ?ramification? patterns (sediment producing zone A of the slope); as well as ?honeycomb? (sediment transport zone B) and ?dinosaur steps? and ?corals? (sediment deposition zone C) roughness clusters. Some other structural attributes of studied patterns were also statistically different and correlated with the variance, skewness and kurtosis of gray distribution of multiscale digital images. The scale invariance of classified roughness patterns was documented inside the range of five image resolutions. We conjectured that the geometrization of erosion patterns in terms of roughness clustering might benefit the most semi-quantitative models developed for erosion and sediment yield assessments (de Vente and Poesen, 2005).
Resumo:
Aims Dehesas are agroforestry systems characterized by scattered trees among pastures, crops and/or fallows. A study at a Spanish dehesa has been carried out to estimate the spatial distribution of the soil organic carbon stock and to assess the influence of the tree cover. Methods The soil organic carbon stock was estimated from the five uppermost cm of themineral soil with high spatial resolution at two plots with different grazing intensities. The Universal Kriging technique was used to assess the spatial distribution of the soil organic carbon stocks, using tree coverage within a buffering area as an auxiliary variable. Results A significant positive correlation between tree presence and soil organic carbon stocks up to distances of around 8 m from the trees was found. The tree crown cover within a buffer up to a distance similar to the crown radius around the point absorbed 30 % of the variance in the model for both grazing intensities, but residual variance showed stronger spatial autocorrelation under regular grazing conditions. Conclusions Tree cover increases soil organic carbon stocks, and can be satisfactorily estimated by means of crown parameters. However, other factors are involved in the spatial pattern of the soil organic carbon distribution. Livestock plays an interactive role together with tree presence in soil organic carbon distribution.
Resumo:
The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume.
Resumo:
It is estimated that N losses from fertilized crops range between 50-70%, depending on management practices, climate and soil conditions. Ammonia (NH3) emissions following land application of animal manures give rise to a significant proportion of the total NH3 emissions from agricultural sources.
Resumo:
El estudio de la estructura del suelo es de vital importancia en diferentes campos de la ciencia y la tecnología. La estructura del suelo controla procesos físicos y biológicos importantes en los sistemas suelo-planta-microorganismos. Estos procesos están dominados por la geometría de la estructura del suelo, y una caracterización cuantitativa de la heterogeneidad de la geometría del espacio poroso es beneficiosa para la predicción de propiedades físicas del suelo. La tecnología de la tomografía computerizada de rayos-X (CT) nos permite obtener imágenes digitales tridimensionales del interior de una muestra de suelo, proporcionando información de la geometría de los poros del suelo y permitiendo el estudio de los poros sin destruir las muestras. Las técnicas de la geometría fractal y de la morfología matemática se han propuesto como una poderosa herramienta para analizar y cuantificar características geométricas. Las dimensiones fractales del espacio poroso, de la interfaz poro-sólido y de la distribución de tamaños de poros son indicadores de la complejidad de la estructura del suelo. Los funcionales de Minkowski y las funciones morfológicas proporcionan medios para medir características geométricas fundamentales de los objetos geométricos tridimensionales. Esto es, volumen, superficie, curvatura media de la superficie y conectividad. Las características del suelo como la distribución de tamaños de poros, el volumen del espacio poroso o la superficie poro-solido pueden ser alteradas por diferentes practicas de manejo de suelo. En este trabajo analizamos imágenes tomográficas de muestras de suelo de dos zonas cercanas con practicas de manejo diferentes. Obtenemos un conjunto de medidas geométricas, para evaluar y cuantificar posibles diferencias que el laboreo pueda haber causado en el suelo. ABSTRACT The study of soil structure is of vital importance in different fields of science and technology. Soil structure controls important physical and biological processes in soil-plant-microbial systems. Those processes are dominated by the geometry of soil pore structure, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. The technology of X-ray computed tomography (CT) allows us to obtain three-dimensional digital images of the inside of a soil sample providing information on soil pore geometry and enabling the study of the pores without disturbing the samples. Fractal geometry and mathematical morphological techniques have been proposed as powerful tools to analyze and quantify geometrical features. Fractal dimensions of pore space, pore-solid interface and pore size distribution are indicators of soil structure complexity. Minkowski functionals and morphological functions provide means to measure fundamental geometrical features of three-dimensional geometrical objects, that is, volume, boundary surface, mean boundary surface curvature, and connectivity. Soil features such as pore-size distribution, pore space volume or pore-solid surface can be altered by different soil management practices. In this work we analyze CT images of soil samples from two nearby areas with contrasting management practices. We performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil.
Resumo:
This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J). FT and RPR were supported by FACCE MACSUR (3200009600) through the Finnish Ministry of Agriculture and Forestry (MMM). EC, HE and EL were supported by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish University of Agricultural Sciences) and thank professor P-E Jansson (Royal Institute of Technology, Stockholm) for support. JC, HR and DW thank the INRA ACCAF metaprogramm for funding and Eric Casellas from UR MIAT INRA for support. CB was funded by the Helmholtz project “REKLIM—Regional Climate Change”. CK was funded by the HGF Alliance “Remote Sensing and Earth System Dynamics” (EDA). FH was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) under the Grant FOR1695. FE and SS acknowledge support by the German Science Foundation (project EW 119/5-1). HH, GZ, SS, TG and FE thank Andreas Enders and Gunther Krauss (INRES, University of Bonn) for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
This dataset contains continuous time series of land surface temperature (LST) at spatial resolution of 300m around the 12 experimental sites of the PAGE21 project (grant agreement number 282700, funded by the EC seventh Framework Program theme FP7-ENV-2011). This dataset was produced from hourly LST time series at 25km scale, retrieved from SSM/I data (André et al., 2015, doi:10.1016/j.rse.2015.01.028) and downscaled to 300m using a dynamic model and a particle smoothing approach. This methodology is based on two main assumptions. First, LST spatial variability is mostly explained by land cover and soil hydric state. Second, LST is unique for a land cover class within the low resolution pixel. Given these hypotheses, this variable can be estimated using a land cover map and a physically based land surface model constrained with observations using a data assimilation process. This methodology described in Mechri et al. (2014, doi:10.1002/2013JD020354) was applied to the ORCHIDEE land surface model (Krinner et al., 2005, doi:10.1029/2003GB002199) to estimate prior values of each land cover class provided by the ESA CCI-Land Cover product (Bontemps et al., 2013) at 300m resolution . The assimilation process (particle smoother) consists in simulating ensemble of LST time series for each land cover class and for a large number of parameter sets. For each parameter set, the resulting temperatures are aggregated considering the grid fraction of each land cover and compared to the coarse observations. Miniminizing the distance between the aggregated model solutions and the observations allow us to select the simulated LST and the corresponding parameter sets which fit the observations most closely. The retained parameter sets are then duplicated and randomly perturbed before simulating the next time window. At the end, the most likely LST of each land cover class are estimated and used to reconstruct LST maps at 300m resolution using ESA CCI-Land Cover. The resulting temperature maps on which ice pixels were masked, are provided at daily time step during the nine-year analysis period (2000-2009).
Resumo:
Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.
Resumo:
Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.
Resumo:
Mode of access: Internet.