976 resultados para Sludge drying
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The control of the nitrate recirculation flow in a predenitrification system is addressed. An elementary mass balance analysis on the utilisation efficiency of the influent biodegradable COD (bCOD) for nitrate removal indicates that the control problem can be broken down into two parts: maintaining the anoxic zone anoxic (i.e. nitrate is present throughout the anoxic zone) and maximising the usage of influent soluble bCOD for denitrification. Simulation studies using the Simulation Benchmark developed in the European COST program show that both objectives can be achieved by maintaining the nitrate concentration at the outlet of the anoxic zone at around 2 mgN/L. This setpoint appears to be robust towards variations in the influent characteristics and sludge kinetics.
Resumo:
An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.
Resumo:
The biological reactions during the settling and decant periods of Sequencing Batch Reactors (SBRs) are generally ignored as they are not easily measured or described by modelling approaches. However, important processes are taking place, and in particular when the influent is fed into the bottom of the reactor at the same time (one of the main features of the UniFed process), the inclusion of these stages is crucial for accurate process predictions. Due to the vertical stratification of both liquid and solid components, a one-dimensional hydraulic model is combined with a modified ASM2d biological model to allow the prediction of settling velocity, sludge concentration, soluble components and biological processes during the non-mixed periods of the SBR. The model is calibrated on a full-scale UniFed SBR system with tracer breakthrough tests, depth profiles of particulate and soluble compounds and measurements of the key components during the mixed aerobic period. This model is then validated against results from an independent experimental period with considerably different operating parameters. In both cases, the model is able to accurately predict the stratification and most of the biological reactions occurring in the sludge blanket and the supernatant during the non-mixed periods. Together with a correct description of the mixed aerobic period, a good prediction of the overall SBR performance can be achieved.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
New Zealand has a good Neogene plant fossil record. During the Miocene it was without high topography and it was highly maritime, meaning that its climate, and the resulting vegetation, would be controlled dominantly by zonal climate conditions. Its vegetation record during this time suggests the climate passed from an ever-wet and cool but frostless phase in the Early Miocene in which Nothofagus subgenus Brassospora was prominent. Then it became seasonally dry, with vegetation in which palms and Eucalyptus were prominent and fires were frequent, and in the mid-Miocene, it developed a dry-climate vegetation dominated by Casuarinaceae. These changes are reflected in a sedimentological change from acidic to alkaline chemistry and the appearance of regular charcoal in the record. The vegetation then changed again to include a prominent herb component including Chenopodiaceae and Asteraceae. Sphagnum became prominent, and Nothofagus returned, but mainly as the subgenus Fuscospora (presently restricted to temperate climates). This is interpreted as a return to a generally wet, but now cold climate, in which outbreaks of cold polar air and frost were frequent. The transient drying out of a small maritime island and the accompanying vegetation/climate sequence could be explained by a higher frequency of the Sub-Tropical High Pressure (STHP) cells (the descending limbs of the Hadley cells) over New Zealand during the Miocene. This may have resulted from an increased frequency of 'blocking', a synoptic situation which occurs in the region today. An alternative hypothesis, that the global STHP belt lay at a significantly higher latitude in the early Neogene (perhaps 55degreesS) than today (about 30degreesS), is considered less likely because of physical constraints on STHP belt latitude. In either case, the difference between the early Neogene and present situation may have been a response to an increased polar-equatorial temperature gradient. This contrasts with current climate models for the geological past in which the latitude of the High Pressure belt impact is held invariant though geological time. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus Scalindua brodae and Scalindua wagneri considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus Scalindua sorokinii, was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.
Resumo:
A molecular approach was used to investigate a recently described candidate division of the domain Bacteria, TM7, currently known only from environmental 16S ribosomal DNA sequence data, A number of TM7-specific primers and probes were designed and evaluated. Fluorescence in situ hybridization (FISH) of a laboratory scale bioreactor using two independent TM7-specific probes revealed a conspicuous sheathed-filament morphotype, fortuitously enriched in the reactor. Morphologically, the filament matched the description of the Eikelboom morphotype 0041-0675 widely associated with bulking problems in activated-sludge wastewater treatment systems. Transmission electron microscopy of the bioreactor sludge demonstrated that the sheathed-filament morphotype had a typical gram-positive cell envelope ultrastructure. Therefore, TM7 is only the third bacterial lineage recognized to have gram-positive representatives. TM7-specific FISH analysis of two full-scale wastewater treatment plant sludges, including the one used to seed the laboratory scale reactor, indicated the presence of a number of morphotypes, including sheathed filaments. TM7-specific PCR clone libraries prepared from the two full-scale sludges yielded 23 novel TM7 sequences. Three subdivisions could be defined based on these data and publicly available sequences. Environmental sequence data and TM7-specific FISH analysis indicate that members of the TM7 division are present in a variety of terrestrial, aquatic, and clinical habitats. A highly atypical base substitution (Escherichia coli position 912; C to U) for bacterial 16S rRNAs was present in almost all TM7 sequences, suggesting that TM7 bacteria, like Archaea, may be streptomycin resistant at the ribosome level.
Resumo:
Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was
Resumo:
Development of a granular sludge with high strength, high biological activity and a narrow settling distribution is necessary for optimal operation of high-rate upflow anaerobic treatment systems. Several studies have compared granules produced from different wastewaters but these have largely been from laboratory-fed reactors or compared granules from full-scale reactors fed similar wastewater types. Though two authors have commented on the inferiority of granules produced by a protein-based feed, the properties of these granules have not been characterised. In this paper, granules from full-scale reactors treating fruit and vegetable cannery effluent, two brewery effluents and a pig abattoir (slaughterhouse) were compared in terms of basic composition, size distribution, density, settling velocity, shear strength, and EPS content. The results supported previous qualitative observations by other researchers that indicate granule properties depend more on wastewater type rather than reactor design or operating conditions such as pre-acidification level. The cannery-fed granules bad excellent shear strength, settling distribution and density. Granules from the two brewery-fed reactors had statistically the same bulk properties, which were still acceptable for upflow applications. The protein-grown granule had poor strength and settling velocity. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
BP Refinery (Bulwer Island) Ltd (BP) located on the eastern Australian coast is currently undergoing a major expansion as a part of the Queensland Clean Fuels Project. The associated wastewater treatment plant upgrade will provide a better quality of treated effluent than is currently possible with the existing infrastructure, and which will be of a sufficiently high standard to meet not only the requirements of imposed environmental legislation but also BP's environmental objectives. A number of challenges were faced when considering the upgrade, particularly; cost constraints and limited plot space, highly variable wastewater, toxicity issues, and limited available hydraulic head. Sequencing Batch Reactor (SBR) Technology was chosen for the lagoon upgrade based on the following; SBR technology allowed a retro-fit of the existing earthen lagoon without the need for any additional substantial concrete structures, a dual lagoon system allowed partial treatment of wastewaters during construction, SBRs give substantial process flexibility, SBRs have the ability to easily modify process parameters without any physical modifications, and significant cost benefits. This paper presents the background to this application, an outline of laboratory studies carried out on the wastewater and details the full scale design issues and methods for providing a cost effective, efficient treatment system using the existing lagoon system.
Resumo:
The nitrogen removal capacity of a suspended culture system treating mature landfill leachate was investigated. Leachate containing high ammonium levels of 300-900 mg N/L was nitrified in a bench scale sequencing batch reactor. Leachate from four different landfills was treated over a two year period for the removal of nitrogen. In this time, a highly specific nitrifying culture was attained that delivered exceptionally high rates of ammonia removal. No sludge was wasted from the system to increase the throughput and up to 13 g/L of MLSS was obtained. Settleability of the purely nitrifying biomass was excellent with SVI less than 40 mL/g, even at the high sludge concentrations. Nitrification rates up to 246 mg NI(L h) (5.91 g N/(L d)) and specific nitrification rates of 36 mg N/(gVSS h) (880 mg N/(gVSS d)) were obtained. The loading to the system at this time allowed complete nitrification of the leachate with a hydraulic retention time of only 5 hours. Following these successful treatability studies, a full-scale plant was designed and built at one of the landfills investigated.
Resumo:
Skinks from the genera Eulamprus, Gnypetoscincus and Nangura are a prominent component of the reptile fauna of the mesic forests of the east coast of Australia and have been the subject of numerous ecological studies. Highly conserved morphology and the retention of ancestral traits have limited our understanding of the relationships within and among these genera beyond an initial identification of species groups within Eulamprus. To address this deficit and to explore the relationships between Eulamprus and the monotypic genera Nangura and Gnypetoscincus, sections of two mitochondrial genes (ND4 and 16S rRNA) were sequenced and subjected to Bayesian phylogenetic analysis. This phylogenetic analysis supports recognition of the three species groups proposed for Eulamprus (murrayi, quoyii and tenuis) and indicates that this genus is paraphyletic, with Gnypetoscincus and Nangura being proximal to basal lineages of the tenuis group. To resolve these and broader problems of paraphyly, we suggest that each of the species groups from 'Eulamprus' should be recognised as a distinct genus. The phylogenetically and ecologically distinct water skinks of the quoyii group would be retained within Eulamprus and the diverse species of the tenuis group allocated to Concinnia. We suggest placing the monophyletic murrayi group, endemic to the rainforests of central eastern Australia, in a new genus ( yet to be formally described). The sequencing data also revealed the existence of a genetically divergent but morphologically cryptic lineage within E. murrayi and substantial diversity within E. quoyii. There is evidence for two major habitat shifts from rainforest towards drier habitats, one leading to the quoyii group and the second defining a clade of three species within the tenuis complex. These ecological transitions may represent adaptations to general drying across eastern Australia during the late Miocene - Pliocene. Each of the major areas of east coast tropical or subtropical rainforest contains multiple phylogenetically diverse endemic species, reflecting the long-term persistence and high conservation value of wet forest habitats in each area.