949 resultados para Skew-Symmetric Torsion
Resumo:
This review article describes the properties and the main applications of the glicol[n]urils. These compounds are cavitands made of n glycolurilic units arranged in circles, giving rise to extremely symmetric toroidal molecules. The cucurbit[n]urils create this way variable-sized hydrophobic cavities and the glycolurilic carbonyles delimit two portals on these cavities, slightly narrower than their internal radii. Their structure, physical and chemical properties favor the formation of inclusion compounds, and turn them into important building blocks for supramolecular chemistry and nanotechnology.
Resumo:
The main objective of this thesis is to show that plate strips subjected to transverse line loads can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the elastic behaviour of both the centre line section of a semi infinite plate supported along two edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations based on the two parameter BEF theory. The transverse bending stiffness of the plate strip forms the foundation. The foundation modulus is shown, mathematically and physically, to be the zero order term of the fourth order differential equation governing the behaviour of BEF, whereas the torsion rigidity of the plate acts like pre tension in the second order term. Direct equivalence is obtained for harmonic line loading by comparing the differential equations of Levy's method (a simply supported plate) with the BEF method. By equating the second and zero order terms of the semi infinite BEF model for each harmonic component, two parameters are obtained for a simply supported plate of width B: the characteristic length, 1/ λ, and the normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion stiffness, nlin. This procedure gives the following result for the first mode when a uniaxial stress field was assumed (ν = 0): 1/λ = √2B/π and nlin = 1. For constant line loading, which is the superimposition of harmonic components, slightly differing foundation parameters are obtained when the maximum deflection and bending moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1 /λ= 1.47B/π and nlin. = 0.59 for a simply supported plate; and 1/λ = 0.99B/π and nlin = 0.25 for a fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely on finite element analysis (FEA) results: 1/λ = 1.29B/π and nlin. = 0.65, where B is the double width of the cantilever plate strip. The stress biaxial, v > 0, is shown not to affect the values of the BEF parameters significantly the result of the geometric nonlinearity caused by in plane, axial and biaxial loading is studied theoretically by comparing the differential equations of Levy's method with the BEF approach. The BEF model is generalised to take into account the elastic rotation stiffness of the longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson's ratio, and geometric non linearity, on bending behaviour resulting from axial and transverse inplane loading. It is also shown that the BEF parameters of the semi infinite model are valid for linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying it to the analysis of bending stresses caused by misalignments in a laboratory test panel. In summary, it can be concluded that the advantages of the BEF theory are that it is a simple tool, and that it is accurate enough for specific stress analysis of semi infinite and finite plate bending problems.
Resumo:
Performance of symmetric and asymmetriccryptography algorithms in small devices is presented. Both temporaland energy costs are measured and compared with the basicfunctional costs of a device. We demonstrate that cryptographicpower costs are not a limiting factor of the autonomy of a deviceand explain how processing delays can be conveniently managedto minimize their impact.
Resumo:
Keskitaajuudella toimivia muuntajia käytetään laajalti tehoelektroniikkasovelluksissa kuten DC/DC-konverttereissa ja muissa hakkuriteholähteissä. Muuntaja on induktiivinen komponentti, jonka magneettisen tasapainon säilyttäminen hakkuriteholähteissä on laitteen virheettömän toiminnan kannalta tärkeää. Muuntajaa syöttävän virtapiirin on muodostettava symmetrinen syöttöjännite, jotta muuntajan vuo ei ajaudu positiiviseen tai negatiiviseen kyllästykseen. Tässä diplomityössä esitetään muuntajan sähkömagneettinen toimintaperiaate, kyllästymisen syyt hakkuriteholähteissä sekä kehitetään aktiivinen ohjaus vuotasapainon säilyttämiseksi. Hakkuriteholähteissä käytettävissä muuntajissa on monesti useampi kuin kaksi käämiä. Tässä työssä tutkittavassa muuntajassa on useita ensiöitä ja useita toisioita ja muuntajaa syötetään keskitaajuudella. Tämä tuo uusia ongelmia verrattuna perinteiseen yksivaiheiseen DC/DC-konvertteriin. Näihin ongelmiin esitetään ratkaisut diplomityön tutkimuksessa.
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
The interaction between the soil and tillage tool can be examined using different parameters for the soil and the tool. Among the soil parameters are the shear stress, cohesion, internal friction angle of the soil and the pre-compression stress. The tool parameters are mainly the tool geometry and depth of operation. Regarding to the soils of Rio Grande do Sul there are hardly any studies and evaluations of the parameters that have importance in the use of mathematical models to predict tensile loads. The objective was to obtain parameters related to the soils of Rio Grande do Sul, which are used in soil-tool analysis, more specifically on mathematical models that allow the calculation of tractive effort for symmetric and narrow tools. Two of the main soils of Rio Grande do Sul, an Albaqualf and a Paleudult were studied. Equations that relate the cohesion, internal friction angle of the soil, adhesion, soil-tool friction angle and pre-compression stress as a function of water content in the soil were obtained, leading to important information for use of mathematical models for tractive effort calculation.
Resumo:
A case of torsion of the gallbladder is presented. This is a rare condition that occurs when it is associated with anatomical variants related to abnormal fixation of the gallbladder to the liver bed. The blood irrigation is insufficient and the gallbladder develops necrosis. The abnormal implantation occurs in 4% of the population. If the gallbladder losses its fixations to the inferior margin of the liver with the presence of a 1011.g mesocyst a torsion can occur when this gallbladder twists axially with subsequent occlusion of the blood flow. The signs and symptoms are similar to those of severe acute cholecystitis: abrupt onset of the pain and large palpable mass below the right costal margin. The ultrasound can show a very large and anteriorly floating gallbladder: In this case, the ultrasound did not show any abnormal signs, so it is usually diagnosed at laparotomy and the treatement consists of cholecystectomy. This condition should be suspected in acute abdominal pain of unknown origin.
Resumo:
Our objective is to report a case of gallbladder torsion treated by laparoscopic cholecystectomy. A 87 year old patient presented with intense right upper quadrant pain, anorexia, nausea and vomiting. Murphy's sign was present at physical examination. Hemogram showed 9.200 leukocytes/mm³, with six bands. Ultrassonography showed a distended gallbladder, perivesicular fluid collection, wall edema, and sludge with stones inside. At laparoscopic cholecystectomy, there was a complete gallbladder torsion with areas of necrosis. There was no postoperative complication. Pathologic examination confirmed the diagnosis of acute calculous cholecystitis with areas of necrosis.
Resumo:
Appendices epiploicae can be the site of torsion and appendagitis. Diagnosis is currently being made by ultrasonography and computerized tomography. Expectant treatment is proposed based on the assumption that epiploic appendicitis is a self limited affection. A case of torsion of a sigmoid epiploic appendage is described. The condition was missed by abdominal ultrasonography. Correct diagnosis and immediate definite treatment were performed by videolaparoscopy.
Resumo:
We present two cases of greater omental torsion, a rare condition of acute abdominal pain, emphasizing the clinical manifestations and imaging findings, which can lead us to the difficult preoperative diagnosis of this entity.
Resumo:
Cecal volvulus is an uncommon cause of acute bowel obstruction in adults. The mechanism is torsion of the enlarged, poorly-fixed or hypermobile cecum. Patients with this condition may display highly variable clinical presentations, ranging from intermittent, self-limiting abdominal discomfort to acute abdominal pain associated with intestinal strangulation and sepsis. The treatment needs to be individualized for each case, but surgical management is required in almost every case. In the presence of gangrene or perforation of the cecum, resection and primary ileocolic anastomosis is recommended. However, in non-complicated cases detorsion and cecopexy are adequate. The authors report one case of cecal volvulus in a 55-year-old women treated with cecopexy that complicated with septic jaundice.
Resumo:
Työssä selvitetään vapaan väännön (St. Venantin väännön) ja estetyn väännön vaikutus I-, H-, RHS-, CHS- ja U-profiileille, kun profiilia kuormitetaan lisäksi muilla voimakomponenteilla, kuten aksiaalisella voimalla, leikkausvoimalla tai taivutusmomentilla. Laskennassa käytetään pääsääntöisesti Eurocoden mukaisia ohjeita, mutta niiden puuttuessa sovelletaan jotain muuta yleisesti hyväksyttyä menetelmää. Laskennassa käytetään poikkileikkausluokkia 1-3 soveltuvin osin. Työn tuloksena on saatu yhtälömuotoinen ratkaisu erilaisille kuormitusyhdistelmille, kuten vääntö yhdistettynä vetoon/puristukseen tai taivutukseen. Työhön kuuluu myös lujuuslaskentaohjelman tulosten verifiointi.
Resumo:
Focal symmetrical encephalomalacia (FSE) is the most prominent lesion seen in the chronic form of enterotoxemia by Clostridium perfringens type D. This paper reports FSE in sheep in Brazil. Six deaths occurred within a seven days period in a flock of 70, four to 30-month-old Santa Inês sheep in the state of Paraíba in the Brazilian semiarid. The flock was grazing a paddock of irrigated sprouting Cynodon dactylon (Tifton grass), and supplemented, ad libitum, with a concentrate of soybean, corn and wheat. Nervous signs included blindness and recumbence. A 19 month-old sheep was examined clinically and necropsied after a clinical course of three days. Gross lesions were herniation of the cerebellar vermis and multifocal, bilateral, symmetric brownish areas in the internal capsule, thalamus and cerebellar peduncles. Histologic lesions were multifocal, bilateral malacia with some neutrophils, swelling of blood vessels endothelium, perivascular edema, and hemorrhages. The flock was vaccinated, before the outbreak, with only one dose of Clostridium perfringens type D vaccine. Two factors are suggested to be important for the occurrence of the disease: insufficient immunity due to the incorrect vaccination; and high nutritional levels by the supplementation with highly fermentable carbohydrates.
Resumo:
Carbon Fibre Reinforced Carbon (CFRC) Composites are increasing their applications due to their high strength and Youngs Modulus at high temperatures in inert atmosphere. Although much work has been done on processing and structure and properties relationship, few studies have addressed the modelling of mechanical properties. This work is divided in two parts. In the first part, a modelling of mechanical properties was carried out for two bi-directional composites using a model based on the Bernoulli-Euler theory for symmetric laminated beams. In the second part, acoustic emission (AE) was used as an auxiliary technique for monitoring the failure process of the composites. Differences in fracture behaviour are reflected in patterns of AE.