986 resultados para Simuliidae--Phylogeny.
Resumo:
Abstract Macroevolutionary and microevolutionary studies provide complementary explanations of the processes shaping the evolution of niche breadth. Macroevolutionary approaches scrutinize factors such as the temporal and spatial environmental heterogeneities that drive differentiation among species. Microevolutionary studies, in contrast, focus on the processes that affect intraspecific variability. We combine these perspectives by using macroevolutionary models in a comparative study of intraspecific variability. We address potential differences in rates of evolution of niche breadth and position in annual and perennial plants of the Eriogonoideae subfamily of the Polygonaceae. We anticipated higher rates of evolution in annuals than in perennials owing to differences in generation time that are paralleled by rates of molecular evolution. Instead, we found that perennial eriogonoid species present greater environmental tolerance (wider climate niche) than annual species. Niche breadth of perennial species has evolved two to four times faster than in annuals, while niche optimum has diversified more rapidly among annual species than among perennials. Niche breadth and average elevation of species are correlated. Moreover, niche breadth increases more rapidly with mean species elevation in perennials than in annuals. Our results suggest that both environmental gradients and life-history strategy influence rates and patterns of niche breadth evolution.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
Epidemiological processes leave a fingerprint in the pattern of genetic structure of virus populations. Here, we provide a new method to infer epidemiological parameters directly from viral sequence data. The method is based on phylogenetic analysis using a birth-death model (BDM) rather than the commonly used coalescent as the model for the epidemiological transmission of the pathogen. Using the BDM has the advantage that transmission and death rates are estimated independently and therefore enables for the first time the estimation of the basic reproductive number of the pathogen using only sequence data, without further assumptions like the average duration of infection. We apply the method to genetic data of the HIV-1 epidemic in Switzerland.
Resumo:
Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.
Resumo:
We sequenced 998 base pairs (bp) of mitochondrial DNA cytochrome b and 799 bp of nuclear gene BRCA1 in the Lesser white-toothed shrew (Crocidura suaveolens group) over its geographic range from Portugal to Japan. The aims of the study were to identify the main clades within the group and respective refugia resulting from Pleistocene glaciations. Analyses revealed the Asian lesser white-toothed shrew (C. shantungensis) as the basal clade, followed by a major branch of C. suaveolens, subdivided sensu stricto into six clades, which split-up in the Upper Pliocene and Lower Pleistocene (1.9-0.9 Myr). The largest clade, occurring over a huge range from east Europe to Mongolia, shows evidence of population expansion after a bottleneck. West European clades originated from Iberian and Italo-Balkanic refugia. In the Near East, three clades evolved in an apparent hotspot of refugia (west Turkey, south-west and south-east of the Caucasus). Most clades include specimens of different morphotypes and the validity of many taxa in the C. suaveolens group has to be re-evaluated.
Resumo:
Secreted proteases constitute potential virulence factors of dermatophytes. A total of seven genes encoding putative serine proteases of the subtilisin family (SUB) were isolated in Trichophyton rubrum. Based on sequence data and intron-exon structure, a phylogenetic analysis of subtilisins from T. rubrum and other fungi revealed a presumed ancestral lineage comprising T. rubrum SUB2 and Aspergillus SUBs. All other SUBs (SUB1, SUB3-7) are dermatophyte-specific and have apparently emerged more recently, through successive gene duplication events. We showed that two subtilisins, Sub3 and Sub4, were detected in culture supernatants of T. rubrum grown in a medium containing soy protein as a sole nitrogen source. Both recombinant enzymes produced in Pichia pastoris are highly active on keratin azure suggesting that these proteases play an important role in invasion of keratinised tissues by the fungus. The set of deduced amino acid sequences of T. rubrum SUB ORFs allowed the identification of orthologous Subs secreted by other dermatophyte species using proteolysis and mass spectrometry.
Resumo:
Some species introduced into new geographical areas from their native ranges wreak ecological and economic havoc in their new environment. Although many studies have searched for either species or habitat characteristics that predict invasiveness of exotic species, the match between characteristics of the invader and those of members of the existing native community may be essential to understanding invasiveness. Here, we find that one metric, the phylogenetic relatedness of an invader to the native community, provides a predictive tool for invasiveness. Using a phylogenetic supertree of all grass species in California, we show that highly invasive grass species are, on average, significantly less related to native grasses than are introduced but noninvasive grasses. The match between the invader and the existing native community may explain why exotic pest species are not uniformly noxious in all novel habitats. Relatedness of invaders to the native biota may be one useful criterion for prioritizing management efforts of exotic species.
Resumo:
Systematics, phylogeny and geographical distribution of the South American species of Centris (Paracentris) Cameron, 1903, and Centris (Penthemisia) Moure, 1950, including a phylogenetic analysis of the "Centris group" sensu Ayala, 1998 (Hymenoptera, Apoidea, Centridini). A cladistic analysis with the objective of testing the hypothesis of monophily of Centris (Paracentris) Cameron, 1903, and of studying its phylogenetic relationships with the other subgenera that belong to the Centris group, sensu Ayala, 1998, and the relationships among the species that occur in South America, is presented. Centris (Paracentris) is a group of New World bees of amphitropical distribution, especially diversified in the Andes and in the xeric areas of South and North America. Thirty-one species were included in the analysis, four considered as outgroup, and 49 characters, all from external morphology and genitalia of adult specimens. Parsimony analyses with equal weights for the characters and successive weighting were performed with the programs NONA and PAUP, and analyses of implied weighting with the program PeeWee. The strict consensus among the trees obtained in all the analyses indicates that C. (Paracentris), as previously recognized, is a paraphyletic group. In order to eliminate that condition, the subgenera C. (Acritocentris), C. (Exallocentris) and C. (Xerocentris), all described by SNELLING (1974) are synonymized under C. (Paracentris). The subgenus C. (Penthemisia) Moure, 1950, previously considered a synonym of C. (Paracentris), is reinstated, but in a more restricted sense than originally proposed and with the following species: Centris brethesi Schrottky, 1902; C. buchholzi Herbst, 1918; C. chilensis (Spinola, 1851), C. mixta mixta Friese, 1904, and C. mixta tamarugalis Toro & Chiappa, 1989. Centris mixta, previously recognized as the only South American species of the subgenus C. (Xerocentris), a group supposedly amphitropical, came out as the sister-species of C. buchholzi. The following South American species were recognized under Centris (Paracentris): Centris burgdorfi Friese, 1901; C. caelebs Friese, 1900; C. cordillerana Roig-Alsina, 2000; C. euphenax Cockerell, 1913; C. flavohirta Friese, 1900; C. garleppi (Schrottky, 1913); C. klugii Friese, 1900; C. lyngbyei Jensen-Haarup, 1908; C. mourei Roig-Alsina, 2000; C. neffi Moure, 2000; C. nigerrima (Spinola, 1851); C. toroi sp. nov.; C. tricolor Friese, 1900; C. unifasciata (Schrottky, 1913), and C. vogeli Roig-Alsina, 2000. The relationships among the subgenera of the "Centris group" were: (Xanthemisia (Penthemisia (Centris s. str. - Paracentris))). Centris xanthomelaena Moure & Castro 2001, an endemic species of the Caatinga and previously considered a C. (Paracentris), came out as the sister group of C. (Centris) s. str. A new species of C. (Paracentris) from Chile is described: Centris toroi sp. nov. Lectotypus designations and redescriptions are presented for Centris burgdorfi, C. caelebs, C. lyngbyei, C. tricolor, C. autrani Vachal, 1904 and C. smithii Friese, 1900. New synonyms proposed: C. buchholzi Herbst, 1918 = Centris wilmattae Cockerell, 1926 syn. nov.; C. caelebs Friese, 1900 = Paracentris fulvohirta Cameron, 1903. The female of C. vogeli Roig-Alsina, 2000 and the male of C. xanthomelaena are described.
Resumo:
Traditionally, the Drosophila guarani species group has been divided into two subgroups: the guarani and the guaramunu subgroups. Two, out of the four species included in this research, are members of the guarani subgroup (D. ornatifrons Duda, 1927 and D. subbadia Paterson & Mainland, 1943) and two are included in the guaramunu subgroup (D. maculifrons Duda, 1927 and D. griseolineata Duda, 1927). However, some authors have suggested that D. maculifrons and D. griseolineata are much closer to some species of the Drosophila tripunctata group than to some of the species of the guarani group. To add new data to the matter under dispute, Polyacrylamide Gel Eletrophoresis (PAGE-SDS) was used for the analysis and comparison of protein composition and Random Amplified Polymorphic DNA (RAPD) analysis to find differences in genomic DNA, in addition to the analysis of quantitative morphological characters previously described. Analysis of PAGE-SDS results in a dendrogram that pointed out D. subbadia as being the most distant within the Drosophila guarani group. However, these results were not supported either by RAPD analysis or by the analysis of continuous morphological characters, which supplied the clustering of D. subbadia with D. ornatifrons. Although our data give strong support to the clustering of D. subbadia and D. ornatifrons, none of the dendrograms provided a clade comprising D. maculifrons and D. griseolineata. Thus, this research does not support the traditional subdivision of the D. guarani group into those two subgroups.
Resumo:
This work, dedicated to the study of nesting habits of the species of the Neotropical genus Partamona Schwarz, is a sequence to the taxonomic revision recently published elsewhere. A total of 214 nests and nest aggregations of 18 species [Partamona epiphytophila Pedro & Camargo, 2003; P. testacea (Klug, 1807); P. mourei Camargo, 1980; P. vicina Camargo, 1980; P. auripennis Pedro & Camargo, 2003; P. combinata Pedro & Camargo, 2003; P. chapadicola Pedro & Camargo, 2003; P. nhambiquara Pedro & Camargo, 2003; P. ferreirai Pedro & Camargo, 2003; P. pearsoni (Schwarz, 1938); P. gregaria Pedro & Camargo, 2003; P. batesi Pedro & Camargo, 2003; P. ailyae Camargo, 1980; P. cupira (Smith, 1863); P. mulata Moure in Camargo, 1980; P. seridoensis Pedro & Camargo, 2003; P. criptica Pedro & Camargo, 2003; P. helleri (Friese, 1900)] were studied , including data about habitat, substrate, structural characteristics, construction materials and behavior. The descriptions of the nests are illustrated with 48 drawings. Partial data of the nests of P. bilineata (Say, 1837), P. xanthogastra Pedro & Camargo, 1997, P. orizabaensis (Strand, 1919), P. peckolti (Friese, 1901), P. aequatoriana Camargo, 1980, P. musarum (Cockerell, 1917) and P. rustica Pedro & Camargo, 2003 are also presented. Nests of P. grandipennis (Schwarz, 1951), P. yungarum Pedro & Camargo, 2003, P. subtilis Pedro & Camargo, 2003, P. vitae Pedro & Camargo, 2003, P. nigrior (Cockerell, 1925), P. sooretamae Pedro & Camargo, 2003 and P. littoralis Pedro & Camargo, 2003 are unknown. The species of Partamona build notable nest entrance structures, with special surfaces for incoming / exiting bees; some of them are extremely well-elaborated and ornamented, serving as flight orientation targets. All species endemic to western Ecuador to Mexico with known nesting habits (P. orizabaensis, P. peckolti, P. xanthogastra, P. bilineata, P. aequatoriana and P. musarum) build their nests in several substrates, non-associated with termitaria, such as cavities and crevices in walls, among roots of epiphytes and in bases of palm leaves, in abandoned bird nests, under bridges, and in other protected places, except P. peckolti that occasionally occupies termite nests. In South America, on the eastern side of the Andes, only P. epiphytophila and P. helleri nest among roots of epiphytes and other substrates, non-associated with termitaria. All other species studied (P. batesi, P. gregaria, P. pearsoni, P. ferreirai, P. chapadicola, P. nhambiquara, P. vicina, P. mourei, P. auripennis, P. combinata, P. cupira, P. mulata, P. ailyae, P. seridoensis, P. criptica and P. rustica) nest inside active termite nests, whether epigeous or arboreous. The only species that builds obligate subterranean nests, associated or not with termite or ant nests (Atta spp.) is P. testacea. Nests of Partamona have one vestibular chamber (autapomorphic for the genus) closely adjacent to the entrance, filled with a labyrinth of anastomosing pillars and connectives, made of earth and resins. One principal chamber exists for food and brood, but in some species one or more additional chambers are filled with food storage pots. In nests of P. vicina, there is one atrium or "false nest", between the vestibule and the brood chamber, which contains involucral sheaths, cells and empty pots. All structures of the nest are supported by permanent pillars made of earth and resins (another autapomorphy of the genus). The characters concerning nesting habits were coded and combined with morphological and biogeographic data, in order to hypothesize the evolutive scenario of the genus using cladistic methodology. The phylogenetic hypothesis presented is the following: (((((P. bilineata (P. grandipennis, P. xanthogastra)) (P. orizabaensis, P. peckolti)) (P. aequatoriana, P. musarum)) P. epiphytophila, P. yungarum, P. subtilis, P. vitae) (((((P. testacea (P. mourei, P. vicina)) (P. nigrior (P. auripennis, P. combinata))) (P. ferreirai (P. pearsoni (P. gregaria (P. batesi (P. chapadicola, P. nhambiquara)))))) ((((P. ailyae, P. sooretamae) P. cupira, P. mulata) P. seridoensis) P. criptica, P. rustica, P. littoralis)) P. helleri))). One area cladogram is presented. Dates of some vicariance / cladogenesis events are suggested. For bilineata / epiphytophila group, which inhabits the Southwestern Amazonia and the Chocó-Mexican biogeographical components, the origin of ancestral species is attributed to the Middle Miocene, when the transgressions of the Maracaibo and Paranense seas isolated the tropical northwestern South America from the eastern continental land mass. The next cladogenic event in the history of the bilineata / epiphytophila group is attributed to the Plio-Pleistocene, when the Ecuadorian Andes reached more than 3000 m, and the ancestral species was fragmented in two populations, one occupying the western Andes (ancestral species of the bilineata subgroup) and other the southwestern Amazon (ancestral species of the epiphytophila subgroup). Other aspects of the history of Partamona are also discussed.
Resumo:
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.
Resumo:
Neotropical Meliponini: the genus Partamona Schwarz, 1939 (Hymenoptera, Apidae). The systematics and biogeography of Partamona Schwarz, a Neotropical genus of stingless bees (Meliponini, Apinae, Apidae), are revised. Seventeen new species are described: P. epiphytophila sp. nov., P. subtilis sp. nov., P. nhambiquara sp. nov., P. batesi sp. nov., P. yungarum sp. nov., P. vitae sp. nov., P. ferreirai sp. nov., P. gregaria sp. nov., P. auripennis sp. nov., P. nigrilabris sp. nov., P. combinata sp. nov., P. chapadicola sp. nov., P. seridoensis sp. nov., P. littoralis sp. nov., P. criptica sp. nov., P. rustica sp. nov. and P. sooretamae sp. nov. Partamona pseudomusarum Camargo, 1980, is considered as junior synonym of P. vicina Camargo, 1980. Types of P. grandipennis (Schwarz, 1951), P. xanthogastra Pedro & Camargo, 1996-1997, P. pearsoni (Schwarz, 1938), P. ailyae Camargo, 1980, P. pseudomusarum, P. vicina, P. mulata Moure in Camargo, 1980, P. aequatoriana Camargo, 1980, P. mourei Camargo, 1980, P. peckolti, (Friese, 1901), P. testacea (Klug, 1807), P. helleri (Friese, 1900) and P. musarum (Cockerell, 1917) were examined. Lectotypes of P. orizabaensis (Strand, 1919), and P. cupira (Smith, 1863) are designated. An identification key for the species and drawings of morphological characters are presented. A phylogenetic hypothesis, based mainly on morphological characters is proposed. Four groups are defined, considering the shape of mandible of workers and sternum VII of males: bilineata / epiphytophila group (western Amazon to México), including P. bilineata (Say), P. grandipennis, P. xanthogastra P. orizabaensis P. peckolti P. epiphytophila sp. nov., P. subtilis sp. nov., P. nhambiquara sp. nov., P. batesi sp. nov., P. yungarum sp. nov. and P. vitae sp. nov.; musarum group (Central Brazil, north of South America to Central America), including P. musarum, P. aequatoriana, P. vicina, P. mourei, P. pearsoni, P. ferreirai sp. nov., P. gregaria sp. nov. and P. testacea; nigrior group (Central Brazil to northeast of South America) including P. nigrior (Cockerell, 1925), P. auripennis sp. nov., P. nigrilabris sp. nov., P. combinata sp. nov., P. chapadicola sp. nov., P. seridoensis sp. nov. and P. littoralis sp. nov., and cupira group (southeastern and Central Brazil), including P. cupira, P. mulata, P. ailyae, P. sooretamae sp. nov., P. criptica sp. nov., P. rustica sp. nov. and P. helleri. Some geographic distribution patterns, congruent with that of other Meliponini bees, are commented.
Resumo:
Using one male-inherited and eight biparentally inherited microsatellite markers, we investigate the population genetic structure of the Valais chromosome race of the common shrew (Sorex araneus) in the Central Alps of Europe. Unexpectedly, the Y-chromosome microsatellite suggests nearly complete absence of male gene flow among populations from the St-Bernard and Simplon regions (Switzerland). Autosomal markers also show significant genetic structuring among these two geographical areas. Isolation by distance is significant and possible barriers to gene flow exist in the study area. Two different approaches are used to better understand the geographical patterns and the causes of this structuring. Using a principal component analysis for which testing procedure exists, and partial Mantel tests, we show that the St-Bernard pass does not represent a significant barrier to gene flow although it culminates at 2469 m, close to the highest altitudinal record for this species. Similar results are found for the Simplon pass, indicating that both passes represented potential postglacial recolonization routes into Switzerland from Italian refugia after the last Pleistocene glaciations. In contrast with the weak effect of these mountain passes, the Rhône valley lowlands significantly reduce gene flow in this species. Natural obstacles (the large Rhône river) and unsuitable habitats (dry slopes) are both present in the valley. Moreover, anthropogenic changes to landscape structures are likely to have strongly reduced available habitats for this shrew in the lowlands, thereby promoting genetic differentiation of populations found on opposite sides of the Rhône valley.
Resumo:
Mycetarotes is a small genus of the exclusively Neotropical fungus-growing ants, that includes M. parallelus (Emery), M. senticosus Kempf, M. acutus Mayhé-Nunes and M. carinatus Mayhé-Nunes. We hereby revise historical and recent information regarding Mycetarotes species for the first time, providing an identification key to workers, diagnoses, synoptic illustrated redescriptions of the species, including those of sexuals when known, updates of distributional records, and nest pictures of M. carinatus and M. parallelus. We comment the taxonomy and phylogenetic relationships among Mycetarotes and related genera, and on their geographical distribution. The available biological information on the genus is summarized.