935 resultados para Simulation-Numerical
Resumo:
Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.
Resumo:
Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris\-tallisationsprozessen in rnkolloidalen Systemen durchgef\"uhrt. rnEine Kombination von Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde rnimplementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser Hart\-kugeln zu untersuchen. rnIm m\"a\ss{ig} unterk\"uhlten Bulk-Hartkugelsystem sagen wir die homogenen Nukleationsraten voraus und rnvergleichen die Resultate mit anderen theoretischen Ergebnissen und experimentellen Daten. rnWeiterhin analysieren wir die kristallinen Cluster in den Keimbildungs- und Wachstumszonen, rnwobei sich herausstellt, dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. rnKleine Cluster sind eher l\"anglich in eine beliebige Richtung ausgedehnt, w\"ahrend gr\"o\ss{ere} rnCluster kompakter und von ellipsoidaler Gestalt sind. rn rnIm n\"achsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc (100)-W\"anden. rnDie 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die Struktur der rnWand eine entscheidende Rolle in der Kristallisation von Hartkugelkolloiden spielt. rnWir sagen zudem die heterogenen Kristallbildungsraten bei verschiedenen \"Ubers\"attigungsgraden voraus. rnDurch Analyse der gr\"o\ss{ten} Cluster an der Wand sch\"atzen wir zus\"atzlich den Kontaktwinkel rnzwischen Kristallcluster und Wand ab. rnEs stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion rnentfernt sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet. rn rnIm letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-Kolloidsystemen rnzwischen zwei ebenen W\"anden. rnUm die Erstarrungsprozesse f\"ur ein solches System zu untersuchen, haben wir eine Analyse des rnOrdnungsparameters f\"ur die Bindung-Ausrichtung in den Schichten durchgef\"urt. rnDie Ergebnisse zeigen, dass innerhalb einer Schicht keine hexatische Ordnung besteht, rnwelche auf einen Kosterlitz-Thouless-Schmelzvorgang hinweisen w\"urde. rnDie Hysterese in den Erhitzungs-Gefrier\-kurven zeigt dar\"uber hinaus, dass der Kristallisationsprozess rneinen aktivierten Prozess darstellt.
Resumo:
The ability to represent the transport and fate of an oil slick at the sea surface is a formidable task. By using an accurate numerical representation of oil evolution and movement in seawater, the possibility to asses and reduce the oil-spill pollution risk can be greatly improved. The blowing of the wind on the sea surface generates ocean waves, which give rise to transport of pollutants by wave-induced velocities that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associated to a random gravity wave field is a function of the wave Energy Spectra that statistically fully describe it and that can be provided by a wave numerical model. Therefore, in order to perform an accurate numerical simulation of the oil motion in seawater, a coupling of the oil-spill model with a wave forecasting model is needed. In this Thesis work, the coupling of the MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical model has been performed and tested. In order to improve the knowledge of the wind-wave model and its numerical performances, a preliminary sensitivity study to different SWAN model configuration has been carried out. The SWAN model results have been compared with the ISPRA directional buoys located at Venezia, Ancona and Monopoli and the best model settings have been detected. Then, high resolution currents provided by a relocatable model (SURF) have been used to force both the wave and the oil-spill models and its coupling with the SWAN model has been tested. The trajectories of four drifters have been simulated by using JONSWAP parametric spectra or SWAN directional-frequency energy output spectra and results have been compared with the real paths traveled by the drifters.
Resumo:
Laterally loaded piles are a typical situation for a large number of cases in which deep foundations are used. Dissertation herein reported, is a focus upon the numerical simulation of laterally loaded piles. In the first chapter the best model settings are largely discussed, so a clear idea about the effects of interface adoption, model dimension, refinement cluster and mesh coarseness is reached. At a second stage, there are three distinct parametric analyses, in which the model response sensibility is studied for variation of interface reduction factor, Eps50 and tensile cut-off. In addition, the adoption of an advanced soil model is analysed (NGI-ADP). This was done in order to use the complex behaviour (different undrained shear strengths are involved) that governs the resisting process of clay under short time static loads. Once set a definitive model, a series of analyses has been carried out with the objective of defining the resistance-deflection (P-y) curves for Plaxis3D (2013) data. Major results of a large number of comparisons made with curves from API (America Petroleum Institute) recommendation are that the empirical curves have almost the same ultimate resistance but a bigger initial stiffness. In the second part of the thesis a simplified structural preliminary design of a jacket structure has been carried out to evaluate the environmental forces that act on it and on its piles foundation. Finally, pile lateral response is studied using the empirical curves.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
Turbulent energy dissipation is presented in the theoretical context of the famous Kolmogorov theory, formulated in 1941. Some remarks and comments about this theory help the reader understand the approach to turbulence study, as well as give some basic insights to the problem. A clear distinction is made amongst dissipation, pseudo-dissipation and dissipation surrogates. Dissipation regulates how turbulent kinetic energy in a flow gets transformed into internal energy, which makes this quantity a fundamental characteristic to investigate in order to enhance our understanding of turbulence. The dissertation focuses on experimental investigation of the pseudo-dissipation. Indeed this quantity is difficult to measure as it requires the knowledge of all the possible derivatives of the three dimensional velocity field. Once considering an hot-wire technique to measure dissipation we need to deal with surrogates of dissipation, since not all the terms can be measured. The analysis of surrogates is the main topic of this work. In particular two flows, the turbulent channel and the turbulent jet, are considered. These canonic flows, introduced in a brief fashion, are often used as a benchmark for CFD solvers and experimental equipment due to their simple structure. Observations made in the canonic flows are often transferable to more complicated and interesting cases, with many industrial applications. The main tools of investigation are DNS simulations and experimental measures. DNS data are used as a benchmark for the experimental results since all the components of dissipation are known within the numerical simulation. The results of some DNS were already available at the start of this thesis, so the main work consisted in reading and processing the data. Experiments were carried out by means of hot-wire anemometry, described in detail on a theoretical and practical level. The study of DNS data of a turbulent channel at Re=298 reveals that the traditional surrogate can be improved Consequently two new surrogates are proposed and analysed, based on terms of the velocity gradient that are easy to measure experimentally. We manage to find a formulation that improves the accuracy of surrogates by an order of magnitude. For the jet flow results from a DNS at Re=1600 of a temporal jet, and results from our experimental facility CAT at Re=70000, are compared to validate the experiment. It is found that the ratio between components of the dissipation differs between DNS and experimental data. Possible errors in both sets of data are discussed, and some ways to improve the data are proposed.
Resumo:
Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.
Resumo:
The aim of this thesis is the elucidation of structure-properties relationship of molecular semiconductors for electronic devices. This involves the use of a comprehensive set of simulation techniques, ranging from quantum-mechanical to numerical stochastic methods, and also the development of ad-hoc computational tools. In more detail, the research activity regarded two main topics: the study of electronic properties and structural behaviour of liquid crystalline (LC) materials based on functionalised oligo(p-phenyleneethynylene) (OPE), and the investigation on the electric field effect associated to OFET operation on pentacene thin film stability. In this dissertation, a novel family of substituted OPE liquid crystals with applications in stimuli-responsive materials is presented. In more detail, simulations can not only provide evidence for the characterization of the liquid crystalline phases of different OPEs, but elucidate the role of charge transfer states in donor-acceptor LCs containing an endohedral metallofullerene moiety. Such systems can be regarded as promising candidates for organic photovoltaics. Furthermore, exciton dynamics simulations are performed as a way to obtain additional information about the degree of order in OPE columnar phases. Finally, ab initio and molecular mechanics simulations are used to investigate the influence of an applied electric field on pentacene reactivity and stability. The reaction path of pentacene thermal dimerization in the presence of an external electric field is investigated; the results can be related to the fatigue effect observed in OFETs, that show significant performance degradation even in the absence of external agents. In addition to this, the effect of the gate voltage on a pentacene monolayer are simulated, and the results are then compared to X-ray diffraction measurements performed for the first time on operating OFETs.
Resumo:
This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.
Resumo:
Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn
Resumo:
Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.
Resumo:
In this work the problem of performing a numerical simulation of quasi-static crack propagation within an adhesive layer of a bonded joint under Mode I loading affected by stress field changes due to thermal-chemical shrinkage induced by cure process is addressed. Secondly, a parametric study on fracture critical energy, cohesive strength and Young's modulus is performed. Finally, a particular case of adhesive layer stiffening is simulated in order to verify qualitatively the major effect.
Resumo:
Nowadays computer simulation is used in various fields, particularly in laboratories where it is used for the exploration data which are sometimes experimentally inaccessible. In less developed countries where there is a need for up to date laboratories for the realization of practical lessons in chemistry, especially in secondary schools and some higher institutions of learning, it may permit learners to carryout experiments such as titrations without the use of laboratory materials and equipments. Computer simulations may also permit teachers to better explain the realities of practical lessons, given that computers have now become very accessible and less expensive compared to the acquisition of laboratory materials and equipments. This work is aimed at coming out with a virtual laboratory that shall permit the simulation of an acid-base titration and an oxidation-reduction titration with the use of synthetic images. To this effect, an appropriate numerical method was used to obtain appropriate organigram, which were further transcribed into source codes with the help of a programming language so as to come out with the software.
Resumo:
Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.