893 resultados para Simplicity
Resumo:
Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.
Resumo:
Visualising data for exploratory analysis is a major challenge in many applications. Visualisation allows scientists to gain insight into the structure and distribution of the data, for example finding common patterns and relationships between samples as well as variables. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are employed. These methods are favoured because of their simplicity, but they cannot cope with missing data and it is difficult to incorporate prior knowledge about properties of the variable space into the analysis; this is particularly important in the high-dimensional, sparse datasets typical in geochemistry. In this paper we show how to utilise a block-structured correlation matrix using a modification of a well known non-linear probabilistic visualisation model, the Generative Topographic Mapping (GTM), which can cope with missing data. The block structure supports direct modelling of strongly correlated variables. We show that including prior structural information it is possible to improve both the data visualisation and the model fit. These benefits are demonstrated on artificial data as well as a real geochemical dataset used for oil exploration, where the proposed modifications improved the missing data imputation results by 3 to 13%.
Resumo:
The subject of this thesis is the n-tuple net.work (RAMnet). The major advantage of RAMnets is their speed and the simplicity with which they can be implemented in parallel hardware. On the other hand, this method is not a universal approximator and the training procedure does not involve the minimisation of a cost function. Hence RAMnets are potentially sub-optimal. It is important to understand the source of this sub-optimality and to develop the analytical tools that allow us to quantify the generalisation cost of using this model for any given data. We view RAMnets as classifiers and function approximators and try to determine how critical their lack of' universality and optimality is. In order to understand better the inherent. restrictions of the model, we review RAMnets showing their relationship to a number of well established general models such as: Associative Memories, Kamerva's Sparse Distributed Memory, Radial Basis Functions, General Regression Networks and Bayesian Classifiers. We then benchmark binary RAMnet. model against 23 other algorithms using real-world data from the StatLog Project. This large scale experimental study indicates that RAMnets are often capable of delivering results which are competitive with those obtained by more sophisticated, computationally expensive rnodels. The Frequency Weighted version is also benchmarked and shown to perform worse than the binary RAMnet for large values of the tuple size n. We demonstrate that the main issues in the Frequency Weighted RAMnets is adequate probability estimation and propose Good-Turing estimates in place of the more commonly used :Maximum Likelihood estimates. Having established the viability of the method numerically, we focus on providillg an analytical framework that allows us to quantify the generalisation cost of RAMnets for a given datasetL. For the classification network we provide a semi-quantitative argument which is based on the notion of Tuple distance. It gives a good indication of whether the network will fail for the given data. A rigorous Bayesian framework with Gaussian process prior assumptions is given for the regression n-tuple net. We show how to calculate the generalisation cost of this net and verify the results numerically for one dimensional noisy interpolation problems. We conclude that the n-tuple method of classification based on memorisation of random features can be a powerful alternative to slower cost driven models. The speed of the method is at the expense of its optimality. RAMnets will fail for certain datasets but the cases when they do so are relatively easy to determine with the analytical tools we provide.
Resumo:
A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.
Resumo:
The compaction behaviour of powders with soft and hard components is of particular interest to the paint processing industry. Unfortunately, at the present time, very little is known about the internal mechanisms within such systems and therefore suitable tests are required to help in the interpretative process. The TRUBAL, Distinct Element Method (D.E.M.) program was the method of investigation used in this study. Steel (hard) and rubber (soft) particles were used in the randomly-generated, binary assemblies because they provided a sharp contrast in physical properties. For reasons of simplicity, isotropic compression of two-dimensional assemblies was also initially considered. The assemblies were first subject to quasi-static compaction, in order to define their behaviour under equilibrium conditions. The stress-strain behaviour of the assemblies under such conditions was found to be adequately described by a second-order polynomial expansion. The structural evolution of the simulation assemblies was also similar to that observed for real powder systems. Further simulation tests were carried out to investigate the effects of particle size on the compaction behaviour of the two-dimensional, binary assemblies. Later work focused on the quasi-static compaction behaviour of three-dimensional assemblies, because they represented more realistic particle systems. The compaction behaviour of the assemblies during the simulation experiments was considered in terms of percolation theory concepts, as well as more familiar macroscopic and microstructural parameters. Percolation theory, which is based on ideas from statistical physics, has been found to be useful in the interpretation of the mechanical behaviour of simple, elastic lattices. However, from the evidence of this study, percolation theory is also able to offer a useful insight into the compaction behaviour of more realistic particle assemblies.
Resumo:
The thesis aims to define further the biometric correlates in anisometropic eyes in order to provide a structural foundation for propositions concerning the development of ametropia.Biometric data are presented for 40 anisometropes and 40 isometropic controls drawn from Caucasian and Chinese populations.The principal finding was that the main structural correlate of myopia is an increase in axial rather than equatorial dimensions of the posterior globe. This finding has not been previously reported for in vivo work on humans. The computational method described in the thesis is a more accessible method for determination of eye shape than current imaging techniques such as magnetic resonance imaging or laser Doppler interferometry (LDI). Retinal contours derived from LDI and computation were shown to be closely matched. Corneal topography revealed no differences in corneal characteristics in anisometropic eyes, which supports the finding that anisometropia arises from differences in vitreous chamber depth.The corollary to axial expansion in myopia, that is retinal stretch in central regions of the posterior pole, was investigated by measurement of disc-to-fovea distances (DFD) using a scanning laser ophthalmoscope. DFD was found to increase with increased myopia, which demonstrates the primary contribution made by posterior central regions of the globe to axial expansion.The ocular pulse volume and choroidal blood flow, measured with the Ocular Blood Flow Tonograph, were found to be reduced in myopia; the reductions were found to be significantly correlated with vitreous chamber depth. The thesis includes preliminary data on whether the relationship arises from the influx of a blood bolus into eyes of different posterior volumes or represents actual differences in choroidal blood flow.The results presented in this thesis show the utility of computed retinal contour and demonstrate that the structural correlate of myopia is axial rather than equatorial expansion of the vitreous chamber. The technique is suitable for large population studies and its relative simplicity makes it feasible for longitudinal studies on the development of ametropia in, for example, children.
Resumo:
Many workers have studied the ocular components which occur in eyes exhibiting differing amounts of central refractive error but few have ever considered the additional information that could be derived from a study of peripheral refraction. Before now, peripheral refraction has either been measured in real eyes or has otherwise been modelled in schematic eyes of varying levels of sophistication. Several differences occur between measured and modelled results which, if accounted for, could give rise to more information regarding the nature of the optical and retinal surfaces and their asymmetries. Measurements of ocular components and peripheral refraction, however, have never been made in the same sample of eyes. In this study, ocular component and peripheral refractive measurements were made in a sample of young near-emmetropic, myopic and hyperopic eyes. The data for each refractive group was averaged. A computer program was written to construct spherical surfaced schematic eyes from this data. More sophisticated eye models were developed making use of linear algebraic ray tracing program. This method allowed rays to be traced through toroidal aspheric surfaces which were translated or rotated with respect to each other. For simplicity, the gradient index optical nature of the crystalline lens was neglected. Various alterations were made in these eye models to reproduce the measured peripheral refractive patterns. Excellent agreement was found between the modelled and measured peripheral refractive values over the central 70o of the visual field. This implied that the additional biometric features incorporated in each eye model were representative of those which were present in the measured eyes. As some of these features are not otherwise obtainable using in vivo techniques, it is proposed that the variation of refraction in the periphery offers a very useful optical method for studying human ocular component dimensions.
Resumo:
Time after time… and aspect and mood. Over the last twenty five years, the study of time, aspect and - to a lesser extent - mood acquisition has enjoyed increasing popularity and a constant widening of its scope. In such a teeming field, what can be the contribution of this book? We believe that it is unique in several respects. First, this volume encompasses studies from different theoretical frameworks: functionalism vs generativism or function-based vs form-based approaches. It also brings together various sub-fields (first and second language acquisition, child and adult acquisition, bilingualism) that tend to evolve in parallel rather than learn from each other. A further originality is that it focuses on a wide range of typologically different languages, and features less studied languages such as Korean and Bulgarian. Finally, the book gathers some well-established scholars, young researchers, and even research students, in a rich inter-generational exchange, that ensures the survival but also the renewal and the refreshment of the discipline. The book at a glance The first part of the volume is devoted to the study of child language acquisition in monolingual, impaired and bilingual acquisition, while the second part focuses on adult learners. In this section, we will provide an overview of each chapter. The first study by Aviya Hacohen explores the acquisition of compositional telicity in Hebrew L1. Her psycholinguistic approach contributes valuable data to refine theoretical accounts. Through an innovating methodology, she gathers information from adults and children on the influence of definiteness, number, and the mass vs countable distinction on the constitution of a telic interpretation of the verb phrase. She notices that the notion of definiteness is mastered by children as young as 10, while the mass/count distinction does not appear before 10;7. However, this does not entail an adult-like use of telicity. She therefore concludes that beyond definiteness and noun type, pragmatics may play an important role in the derivation of Hebrew compositional telicity. For the second chapter we move from a Semitic language to a Slavic one. Milena Kuehnast focuses on the acquisition of negative imperatives in Bulgarian, a form that presents the specificity of being grammatical only with the imperfective form of the verb. The study examines how 40 Bulgarian children distributed in two age-groups (15 between 2;11-3;11, and 25 between 4;00 and 5;00) develop with respect to the acquisition of imperfective viewpoints, and the use of imperfective morphology. It shows an evolution in the recourse to expression of force in the use of negative imperatives, as well as the influence of morphological complexity on the successful production of forms. With Yi-An Lin’s study, we concentrate both on another type of informant and of framework. Indeed, he studies the production of children suffering from Specific Language Impairment (SLI), a developmental language disorder the causes of which exclude cognitive impairment, psycho-emotional disturbance, and motor-articulatory disorders. Using the Leonard corpus in CLAN, Lin aims to test two competing accounts of SLI (the Agreement and Tense Omission Model [ATOM] and his own Phonetic Form Deficit Model [PFDM]) that conflicts on the role attributed to spellout in the impairment. Spellout is the point at which the Computational System for Human Language (CHL) passes over the most recently derived part of the derivation to the interface components, Phonetic Form (PF) and Logical Form (LF). ATOM claims that SLI sufferers have a deficit in their syntactic representation while PFDM suggests that the problem only occurs at the spellout level. After studying the corpus from the point of view of tense / agreement marking, case marking, argument-movement and auxiliary inversion, Lin finds further support for his model. Olga Gupol, Susan Rohstein and Sharon Armon-Lotem’s chapter offers a welcome bridge between child language acquisition and multilingualism. Their study explores the influence of intensive exposure to L2 Hebrew on the development of L1 Russian tense and aspect morphology through an elicited narrative. Their informants are 40 Russian-Hebrew sequential bilingual children distributed in two age groups 4;0 – 4;11 and 7;0 - 8;0. They come to the conclusion that bilingual children anchor their narratives in perfective like monolinguals. However, while aware of grammatical aspect, bilinguals lack the full form-function mapping and tend to overgeneralize the imperfective on the principles of simplicity (as imperfective are the least morphologically marked forms), universality (as it covers more functions) and interference. Rafael Salaberry opens the second section on foreign language learners. In his contribution, he reflects on the difficulty L2 learners of Spanish encounter when it comes to distinguishing between iterativity (conveyed with the use of the preterite) and habituality (expressed through the imperfect). He examines in turn the theoretical views that see, on the one hand, habituality as part of grammatical knowledge and iterativity as pragmatic knowledge, and on the other hand both habituality and iterativity as grammatical knowledge. He comes to the conclusion that the use of preterite as a default past tense marker may explain the impoverished system of aspectual distinctions, not only at beginners but also at advanced levels, which may indicate that the system is differentially represented among L1 and L2 speakers. Acquiring the vast array of functions conveyed by a form is therefore no mean feat, as confirmed by the next study. Based on the prototype theory, Kathleen Bardovi-Harlig’s chapter focuses on the development of the progressive in L2 English. It opens with an overview of the functions of the progressive in English. Then, a review of acquisition research on the progressive in English and other languages is provided. The bulk of the chapter reports on a longitudinal study of 16 learners of L2 English and shows how their use of the progressive expands from the prototypical uses of process and continuousness to the less prototypical uses of repetition and future. The study concludes that the progressive spreads in interlanguage in accordance with prototype accounts. However, it suggests additional stages, not predicted by the Aspect Hypothesis, in the development from activities and accomplishments at least for the meaning of repeatedness. A similar theoretical framework is adopted in the following chapter, but it deals with a lesser studied language. Hyun-Jin Kim revisits the claims of the Aspect Hypothesis in relation to the acquisition of L2 Korean by two L1 English learners. Inspired by studies on L2 Japanese, she focuses on the emergence and spread of the past / perfective marker ¬–ess- and the progressive – ko iss- in the interlanguage of her informants throughout their third and fourth semesters of study. The data collected through six sessions of conversational interviews and picture description tasks seem to support the Aspect Hypothesis. Indeed learners show a strong association between past tense and accomplishments / achievements at the start and a gradual extension to other types; a limited use of past / perfective marker with states and an affinity of progressive with activities / accomplishments and later achievements. In addition, - ko iss– moves from progressive to resultative in the specific category of Korean verbs meaning wear / carry. While the previous contributions focus on function, Evgeniya Sergeeva and Jean-Pierre Chevrot’s is interested in form. The authors explore the acquisition of verbal morphology in L2 French by 30 instructed native speakers of Russian distributed in a low and high levels. They use an elicitation task for verbs with different models of stem alternation and study how token frequency and base forms influence stem selection. The analysis shows that frequency affects correct production, especially among learners with high proficiency. As for substitution errors, it appears that forms with a simple structure are systematically more frequent than the target form they replace. When a complex form serves as a substitute, it is more frequent only when it is replacing another complex form. As regards the use of base forms, the 3rd person singular of the present – and to some extent the infinitive – play this role in the corpus. The authors therefore conclude that the processing of surface forms can be influenced positively or negatively by the frequency of the target forms and of other competing stems, and by the proximity of the target stem to a base form. Finally, Martin Howard’s contribution takes up the challenge of focusing on the poorer relation of the TAM system. On the basis of L2 French data obtained through sociolinguistic interviews, he studies the expression of futurity, conditional and subjunctive in three groups of university learners with classroom teaching only (two or three years of university teaching) or with a mixture of classroom teaching and naturalistic exposure (2 years at University + 1 year abroad). An analysis of relative frequencies leads him to suggest a continuum of use going from futurate present to conditional with past hypothetic conditional clauses in si, which needs to be confirmed by further studies. Acknowledgements The present volume was inspired by the conference Acquisition of Tense – Aspect – Mood in First and Second Language held on 9th and 10th February 2008 at Aston University (Birmingham, UK) where over 40 delegates from four continents and over a dozen countries met for lively and enjoyable discussions. This collection of papers was double peer-reviewed by an international scientific committee made of Kathleen Bardovi-Harlig (Indiana University), Christine Bozier (Lund Universitet), Alex Housen (Vrije Universiteit Brussel), Martin Howard (University College Cork), Florence Myles (Newcastle University), Urszula Paprocka (Catholic University of Lublin), †Clive Perdue (Université Paris 8), Michel Pierrard (Vrije Universiteit Brussel), Rafael Salaberry (University of Texas at Austin), Suzanne Schlyter (Lund Universitet), Richard Towell (Salford University), and Daniel Véronique (Université d’Aix-en-Provence). We are very much indebted to that scientific committee for their insightful input at each step of the project. We are also thankful for the financial support of the Association for French Language Studies through its workshop grant, and to the Aston Modern Languages Research Foundation for funding the proofreading of the manuscript.
Resumo:
This paper describes an innovative sensing approach allowing capture, discrimination, and classification of transients automatically in gait. A walking platform is described, which offers an alternative design to that of standard force plates with advantages that include mechanical simplicity and less restriction on dimensions. The scope of the work is to investigate as an experiment the sensitivity of the distributive tactile sensing method with the potential to address flexibility on gait assessment, including patient targeting and the extension to a variety of ambulatory applications. Using infrared sensors to measure plate deflection, gait patterns are compared with stored templates using a pattern recognition algorithm. This information is input into a neural network to classify normal and affected walking events, with a classification accuracy of just under 90 per cent achieved. The system developed has potential applications in gait analysis and rehabilitation, whereby it can be used as a tool for early diagnosis of walking disorders or to determine changes between pre- and post-operative gait.
Resumo:
Bubbling fluidized bed technology is one of the most effective mean for interaction between solid and gas flow, mainly due to its good mixing and high heat and mass transfer rate. It has been widely used at a commercial scale for drying of grains such as in pharmaceutical, fertilizers and food industries. When applied to drying of non-pours moist solid particles, the water is drawn-off driven by the difference in water concentration between the solid phase and the fluidizing gas. In most cases, the fluidizing gas or drying agent is air. Despite of the simplicity of its operation, the design of a bubbling fluidized bed dryer requires an understanding of the combined complexity in hydrodynamics and the mass transfer mechanism. On the other hand, reliable mass transfer coefficient equations are also required to satisfy the growing interest in mathematical modelling and simulation, for accurate prediction of the process kinetics. This chapter presents an overview of the various mechanisms contributing to particulate drying in a bubbling fluidized bed and the mass transfer coefficient corresponding to each mechanism. In addition, a case study on measuring the overall mass transfer coefficient is discussed. These measurements are then used for the validation of mass transfer coefficient correlations and for assessing the various assumptions used in developing these correlations.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.
Resumo:
An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.
Resumo:
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.
Resumo:
In this paper, we study an area localization problem in large scale Underwater Wireless Sensor Networks (UWSNs). The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the underwater localization problem very challenging. Exact localization is very difficult for UWSNs in deep underwater environment. We propose a Mobile DETs based efficient 3D multi-power Area Localization Scheme (3D-MALS) to address the challenging problem. In the proposed scheme, the ideas of 2D multi-power Area Localization Scheme(2D-ALS) [6] and utilizing Detachable Elevator Transceiver (DET) are used to achieve the simplicity, location accuracy, scalability and low cost performances. The DET can rise and down to broadcast its position. And it is assumed that all the underwater nodes underwater have pressure sensors and know their z coordinates. The simulation results show that our proposed scheme is very efficient. © 2009 IEEE.
Resumo:
Inference algorithms based on evolving interactions between replicated solutions are introduced and analyzed on a prototypical NP-hard problem: the capacity of the binary Ising perceptron. The efficiency of the algorithm is examined numerically against that of the parallel tempering algorithm, showing improved performance in terms of the results obtained, computing requirements and simplicity of implementation. © 2013 American Physical Society.