884 resultados para Silicon in agriculture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to enable the reuse of the large surplus volume of petroleum produced water for irrigation of crops inedible, the quality evaluation of this water is very important. This work aimed to evaluate the effectiveness of the diffusive gradient in thin films technique (DGT) for the determination of labile Cu (II), Mn (II) and Zn (II) in petroleum produced water destined to reuse in agriculture. Samples were collected at the exit of the wastewater treatment plant (WWTP) (after separation oil/water and flotation) of a Petrobrás onshore production region. Basically, the laboratory experiments with DGT devices involved the evaluation of the behavior of the main variables of the technique for determination of analytes in the samples (diffusion coefficients, immersion time, fractionation of organic and inorganic species, and performance of diffusion gels with different porosities, among others). Also, experiments were conducted based on the solid phase extraction (SPE) protocol with Chelex- 100 resin using previously established protocols to support the study. During the project the possibility of in situ immersions in water treatment plants was evaluated. The DGT technique presented satisfactory results for determination of Mn in produced water, and can be used for in situ determinations. However, the results obtained for Cu and Zn show the need of additional studies

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leafcutter ants are considered pests in agriculture for their impact in human crops, as they behave utilizing foliar fragments to raise their simbiont fungi (Agaricales: Lepiotaceae) inside their nest. Recent studies have noticed that other fungi may be associated to ants inside their nests, for instance, fungi with melanized wall, known by “dematiaceous”. Historically, many black fungi have been noticed as fitopathogens of many plant cultures with economic importance, highlighting dematiaceous ecological behavior importance in this study. This investigation had the purpose of amplifying ecological knowledge of this fungi, isolating and identificating dematiaceous fungi found in Attini nests, having the intention of understanding plant pathogens dispersion by ants. In this work, 66 isolates were characterized in the following genus: Aspergillus, Penicillium, Paecilomyces, Oxyporus, Rhodotorula, Bipolaris, Curvularia, Fusarium, Giberella, Paraphaeosphaeria, and Cladosporium. The genus Bipolaris, Curvularia, Fusarium and Giberella are known for their opportunistic behaviour, with some published human infections in literature. Fusarium is a notorious fitopathogen, with wide number of descriptions and studies involving pathogenicity development, biochemistry and genetics. The isolates outline is of phyto – associated (phytopathogens, endophytic or epiphitic), fulfilling this work intention in alarming fungi capacity of dispersal by ants. The comprehension of phytopathogenical processes may be clarified based on the knowledge of oportunistics fungi that may utilize ants bodies for their own dispersal. The identification of isolates with capacity of infecting humans brings out public health issues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The treatment of domestic and industrial effluents through Wastewater Treatment Plants (WTPs) generates a residue termed sewage sludge, rich in organic matter, high-volume, occasionally containing pathogens and heavy metals. The sludge generation can minimize the benefits brought by the treatment of sewage, because this residue does not always receive appropriate treatment before final disposal. The disposal is another problem related to sludge. Landfills generally does not have physical space and alternatives such as the use in agriculture requires an intense treatment that could be in many cases operational or economic unfeasible. The objective of this work is the theoretical research about the processes of stabilization of the sludge by anaerobic digestion and the methanogenic activity during the process. Through analysis of each step and contemplating each relevant factor in anaerobic digestion process in order to optimize them, we proposed a theoretical model of reactors capable of stabilize the sludge, reduce its volume and eliminate pathogens. The obtained configuration consists of two anaerobic reactors connected in series. The first one operates in the range mesophilic temperature (35 ° C) and has higher hydraulic retention time (25 days) working primarily in the stabilization of organic matter present in the sludge and producing biogas, whereas the second one operates in the thermophilic range (55 ° C) in order to eliminate pathogens, and to reduce the volume. The hydraulic retention time in the second reactor is lower (10 days). Both mesophilic and thermophilic processes were efficient in what was proposed, promoting the stabilization of organic matter present in the sludge and significant reduction of pathogens. As a final step with the sludge previously digested, it is indicated a final dehydration... (Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently the use of pesticides in agriculture is widespread due to their high effectiveness in combating pests, weeds and diseases leading to better productivity and economical performance in agricultural area. The use of pesticides affects the whole world and their use is often performed in an improper and indiscriminate way and for long periods. Several studies have been carried out in order to verify the presence of pesticides in nature, with worrying results. The presence of higher levels of pesticides and their degradation products in soil and surface and groundwater have indicated increasing contamination. Among the most widely used pesticides, herbicides are present and among these trifluralin has occupied an important place due to its widespread use; it is an herbicide originated from benzene derivatives belonging to dinitroanilines family; it is classified as belonging to group C, being possibly carcinogenic for humans, present a high persistence in soil as a result of its low mobility and therefore may affect local edaphic fauna. Diplopods belong to a group of invertebrates considered important in the soil dynamics; due to their close contact with it, these animals can be used as bioindicators of substrates toxicity. This study aimed to expose diplopod specimens of the species R. padbergi to different concentrations of trifluralin and therefore it was mounted five bioassays containing soil from the site where animals were collected (control group) and the same soil mixed to different concentrations of trifluralin herbicide (concentration recommended for agriculture use, that is, the dose recommended by the producer 0.0534g/m2, double, haft and quarter of this dose), animals were exposed for 7 and 90 days. During the entire period of exposure (90 days), it was observed that the number of animals in the control bioassay remained stable until the 5th week, presenting only... (Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sugarcane (Saccharum sp.) is an important grass cultivated in tropical and subtropical regions of the world, such as in Br, Ind, and Ch, and has its biomass being raw material for production of sugar, fuel ethanol, and some other derivatives. Fungal diseases infect sugarcane fields worldwide, damaging crops and thus, causing great economic losses. Fungal specialized structures act during all Pathogen-Host Relationship Cycle (PHRC) (survival, dissemination, infection, colonization, and reproduction of pathogen), maintaining fungal populations in cultivation soil, infecting plants in following crops and vegetative propagation of sugarcane by infected seeds may allow fungal transportation into regions where diseases haven’t occured before. Biotechnological methods and approaches have significantly contributed to understanding of the relationship among parasite and host, as to diseases management (control, detection, and prevention). Some techniques have daily applications in Agriculture, while others are only used in research and to breeding of host resistant varieties. Among notable diseases, smut (Sporisorium scitamineum) and pineapple disease (Ceratocystis paradoxa) are important because they cause damage and losses in sugarcane regions, although there are different periods for each one to occur. This work aims to review the PHRC for each patosystem, the biotechnological methods and approaches and its perspectives in the study and management of these diseases. As environment is an important factor to the effectiveness of PHRC, one chapter is dedicated to Global Climate Change (GCC) and its possible influences over these diseases in a longterm period

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compounds released into the environment can induce genetic alterations in living organisms. A group of chemicals that shows proven toxicity is the pesticides, and the insecticides are the most harmful. The insecticides of the family phenylpyrazole have wide application both in agriculture and in homes. Fipronil, an insecticide of this chemical group, is widely used in various cultures and in homes, mainly for fighting fleas and ticks on dogs and cats. The use of fipronil may represent a risk to man and the environmental health, since this pesticide can potentially induce cell death, regardless of cell type. Fipronil, when in contact with the environment, can undergo various degradation processes, including photodegradation. The toxic effect of one of its metabolites derived from photodegradation, sulfone-fipronil, is approximately 20 fold as great as fipronil itself. The A. cepa test system was used to evaluate cytotoxic, genotoxicity and mutagenic effects of fipronil before and after phptodegradation. Seeds of Allium cepa were subjected to solutions of fipronil, pre-exposed or not exposed to degradation by sunlight. The germination tests were conducted both under the effect of light and in the dark. We evaluated the cumulative potential of this insecticide using 48 and 72-hours recovery tests. The results showed that when fipronil was previously exposed to the sun, it presented a greater genotoxic and mutagenic potential, showing that the metabolites formed by photodegradation can show more harmfull effects

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)