919 resultados para Signal acquisitions
Resumo:
Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 mu M). The protein kinase A inhibitor KT5720 (1 mu M) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
Using a first-principles theoretical model the adsorption of a methyl radical on different sized silver nanoparticles is compared to the adsorption of the same radical on model surfaces. Calculations of our structural, dynamical and electronic properties indicated that small changes in the local environment will lead to small changes in infrared (IR) wavenumbers, but in dramatic changes in the IR signal. Our calculations indicate the lower the adsorption site coordination, the higher is the signal strength, suggesting that small changes in the electronic charge distribution will result in bigger changes in the polarizability and hence in the spectroscopic signal intensity. This effect explains, among others, the signal magnification observed for nanoparticles in surface enhanced Raman spectroscopic (SERS) experiments.
Resumo:
We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.
Resumo:
The Akodontini is the second most speciose tribe of sigmodontine rodents, one of the most diverse groups of neotropical mammals. Molecular phylogenetic analyses are discordant regarding the interrelationships of genera, with low support for some clades. However, two clades are concordant, one (clade A) with Akodon sensu strictu (excluding Akodon serrensis), "Akodon" serrensis, Bibimys, Deltamys, Juscelinomys, Necromys, Oxymycterus, Podoxymys, Thalpomys and Thaptomys, and another (clade B) with Blarinomys, Brucepattersonius, Kunsia, Lenoxus and Scapteromys. Here, we present chromosome painting using Akodon paranaensis (APA) Y paint, after suppression of simple repetitive sequences, on ten Akodontini genera. Partial Y chromosome homology, in addition to the homology already reported on the Akodon genus, was detected on the Y chromosomes of "A." serrensis, Thaptomys, Deltamys, Necromys and Thalpomys and on Y and X chromosomes in Oxymycterus. In Blarinomys, Brucepattersonius, Scapteromys and Kunsia, no APA Y signal was observed using different hybridization conditions; APA X paint gave positive signals only on the X chromosome in all genera. The Y chromosome homology was variable in size and positioning among the species studied as follow: (1) whole acrocentric Y chromosome in Akodon and "A." serrensis, (2) Yp and pericentromeric region in submetacentric Y of Necromys and Thaptomys, (3) pericentromeric region in acrocentric Y of Deltamys, (4) distal Yq in the acrocentric Y chromosome of Thalpomys and (5) proximal Yq in the acrocentric Y and Xp in the basal clade A genus Oxymycterus. The results suggest that the homology involves pairing (pseudoautosomal) and additional regions that have undergone rearrangement during divergence. The widespread Y homology represents a phylogenetic signal in Akodontini that provides additional evidence supporting the monophyly of clade A. The findings also raise questions about the evolution of the pseudoautosomal region observed in Oxymycterus. The Y chromosomes of these closely related species seem to have undergone dynamic rearrangements, including restructuring and reduction of homologous segments. Furthermore, the changes observed may indicate progressive attrition of the Y chromosome in more distantly related species.
Resumo:
The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.
Resumo:
The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.
Resumo:
A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the. target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We present a simultaneous optical signal-to-noise ratio (OSNR) and differential group delay (DGD) monitoring method based on degree of polarization (DOP) measurements in optical communications systems. For the first time in the literature (to our best knowledge), the proposed scheme is demonstrated to be able to independently and simultaneously extract OSNR and DGD values from the DOP measurements. This is possible because the OSNR is related to maximum DOP, while DGD is related to the ratio between the maximum and minimum values of DOP. We experimentally measured OSNR and DGD in the ranges from 10 to 30 dB and 0 to 90 ps for a 10 Gb/s non-return-to-zero signal. A theoretical analysis of DOP accuracy needed to measure low values of DGD and high OSNRs is carried out, showing that current polarimeter technology is capable of yielding an OSNR measurement within 1 dB accuracy, for OSNR values up to 34 dB, while DGD error is limited to 1.5% for DGD values above 10 ps. For the first time to our knowledge, the technique was demonstrated to accurately measure first-order polarization mode dispersion (PMD) in the presence of a high value of second-order PMD (as high as 2071 ps(2)). (C) 2012 Optical Society of America
MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer
Resumo:
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011
Resumo:
LHC searches for supersymmetry currently focus on strongly produced sparticles, which are copiously produced if gluinos and squarks have masses of a few hundred GeV. However, in supersymmetric models with heavy scalars, as favored by the decoupling solution to the SUSY flavor and CP problems, and m((g) over tilde) greater than or similar to 500 GeV as indicated by recent LHC results, chargino-neutralino ((W) over tilde (+/-)(1)(Z) over tilde (2)) production is the dominant cross section for m((W) over tilde1) similar to m((Z) over tilde2) < m(<(g)over tilde>)/3 at LHC with root s = 7 TeV (LHC7). Furthermore, if m((Z) over tilde1) + (m (Z) over tilde) less than or similar to m((Z) over tilde2) less than or similar to m((Z) over tilde1) + m(h), then (Z) over tilde (2) dominantly decays via (Z) over tilde (2) -> (Z) over tilde (1)Z, while (W) over tilde (1) decays via (W) over tilde (1) -> (Z) over tilde W-1. We investigate the LHC7 reach in the W Z + (sic)T channel (for both leptonic and hadronic decays of the W boson) in models with and without the assumption of gaugino mass universality. In the case of the mSUGRA/CMSSM model with heavy squark masses, the LHC7 discovery reach in the W Z+ (sic)T channel becomes competetive with the reach in the canonical (sic)T + jets channel for integrated luminosities similar to 30 fb(-1). We also present the LHC7 reach for a simplified model with arbitrary m((Z) over tilde1) and m((W) over tilde1) similar to m((Z) over tilde2). Here, we find a reach of up to m((W) over tilde1) similar to 200 (250) GeV for 10 (30) fb(-1).
Resumo:
This work investigates the behavior of the sunspot number and Southern Oscillation Index (SOI) signal recorded in the tree ring time series for three different locations in Brazil: Humaita in Amaznia State, Porto Ferreira in So Paulo State, and Passo Fundo in Rio Grande do Sul State, using wavelet and cross-wavelet analysis techniques. The wavelet spectra of tree ring time series showed signs of 11 and 22 years, possibly related to the solar activity, and periods of 2-8 years, possibly related to El Nio events. The cross-wavelet spectra for all tree ring time series from Brazil present a significant response to the 11-year solar cycle in the time interval between 1921 to after 1981. These tree ring time series still have a response to the second harmonic of the solar cycle (5.5 years), but in different time intervals. The cross-wavelet maps also showed that the relationship between the SOI x tree ring time series is more intense, for oscillation in the range of 4-8 years.
Resumo:
In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel.
Resumo:
The accuracy of ranging measurements depends critically on the knowledge of time delays undergone by signals when retransmitted by a remote transponder and due to propagation effects. A new method determines these delays for every single pulsed signal transmission. It utilizes four ground-based reference stations, synchronized in time and installed at well-known geodesic coordinates and a repeater in space, carried by a satellite, balloon, aircraft, and so forth. Signal transmitted by one of the reference bases is retransmitted by the transponder, received back by the four bases, producing four ranging measurements which are processed to determine uniquely the time delays undergone in every retransmission process. A minimization function is derived comparing repeater's positions referred to at least two groups of three reference bases, providing the signal transit time at the repeater and propagation delays, providing the correct repeater position. The method is applicable to the transponder platform positioning and navigation, time synchronization of remote clocks, and location of targets. The algorithm has been demonstrated by simulations adopting a practical example with the transponder carried by an aircraft moving over bases on the ground.
Resumo:
In this paper, we study the signal amplification of coupled active rotators with phase-shifted coupling. We find that the system's response to the external subthreshold signal can be significantly affected by each of the two types of phase-shifted couplings: identical and non-identical phase-shifted couplings. Moreover, through both theoretical analysis and numerical simulations, we have figured out the optimal phase shift, at which the largest signal amplification is generated. These results show that the phase-shifted coupling plays an important role in regulating the system's response to the subthreshold signal.