940 resultados para Side Gates
Resumo:
This paper presents the results of the analysis focused on scientific-technological KT in four Mexican firms and carried out by the case study approach. The analysis highlights the use of KT mechanisms as a means to obtain scientific-technological knowledge, learning, building S&T capabilities, and achieve the results of the R&D and innovation by firms.
Complete and efficient methods for supporting side effects in independent/restricted and-parallelism
Resumo:
It has been shown that it is possible to exploit Independent/Restricted And-parallelism in logic programs while retaining the conventional "don't know" semantics of such programs. In particular, it is possible to parallelize pure Prolog programs while maintaining the semantics of the language. However, when builtin side-effects (such as write or assert) appear in the program, if an identical observable behaviour to that of sequential Prolog implementations is to be preserved, such side-effects have to be properly sequenced. Previously proposed solutions to this problem are either incomplete (lacking, for example, backtracking semantics) or they force sequentialization of significant portions of the execution graph which could otherwise run in parallel. In this paper a series of side-effect synchronization methods are proposed which incur lower overhead and allow more parallelism than those previously proposed. Most importantly, and unlike previous proposals, they have well-defined backward execution behaviour and require only a small modification to a given (And-parallel) Prolog implementation.
Resumo:
At present, several models for quantum computation have been proposed. Adiabatic quantum computation scheme particularly offers this possibility and is based on a slow enough time evolution of the system, where no transitions take place. In this work, a new strategy for quantum computation is provided from the opposite point of view. The objective is to control the non-adiabatic transitions between some states in order to produce the desired exit states after the evolution. The model is introduced by means of an analogy between the adiabatic quantum computation and an inelastic atomic collision. By means of a simple two-state model, several quantum gates are reproduced, concluding the possibility of diabatic universal faulttolerant quantum computation. Going a step further, a new quantum diabatic computation model is glimpsed, where a carefully chosen Hamiltonian could carry out a non-adiabatic transition between the initial and the sought final state.
Resumo:
Carbon management has gradually gained attention within the overall environmental management and corporate social responsibility agendas. The clean development mechanism, from Kyoto Protocol, was envisioned as connecting carbon market and sustainable development objectives in developing countries. Previous research has shown that this potential is rarely being achieved. The paper explores how the incorporation of the human side into carbon management reinforces its contribution to generate human development in local communities and to improve the company's image. A case study of a Brazilian company is presented, with the results of the application of an analytical model that incorporates the human side and human development. The selected project is an "efficient stoves" programme. "Efficient stoves" are recognised in Brazil as social technologies. Results suggest that the fact that social technologies value the human side of the technology plays a key role when it comes to analysing the co-benefits of the project implementation.
Neural network controller for active demand side management with PV energy in the residential sector
Resumo:
In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.