935 resultados para Shot-noise
Resumo:
We present a model for detection of the states of a coupled quantum dots (qubit) by a quantum point contact. Most proposals for measurements of states of quantum systems are idealized. However in a real laboratory the measurements cannot be perfect due to practical devices and circuits. The models using ideal devices are not sufficient for describing the detection information of the states of the quantum systems. Our model therefore includes the extension to a non-ideal measurement device case using an equivalent circuit. We derive a quantum trajectory that describes the stochastic evolution of the state of the system of the qubit and the measuring device. We calculate the noise power spectrum of tunnelling events in an ideal and a non-ideal quantum point contact measurement respectively. We found that, for the strong coupling case it is difficult to obtain information of the quantum processes in the qubit by measurements using a non-ideal quantum point contact. The noise spectra can also be used to estimate the limits of applicability of the ideal model.
Resumo:
It is well known that the addition of noise to the input data of a neural network during training can, in some circumstances, lead to significant improvements in generalization performance. Previous work has shown that such training with noise is equivalent to a form of regularization in which an extra term is added to the error function. However, the regularization term, which involves second derivatives of the error function, is not bounded below, and so can lead to difficulties if used directly in a learning algorithm based on error minimization. In this paper we show that, for the purposes of network training, the regularization term can be reduced to a positive definite form which involves only first derivatives of the network mapping. For a sum-of-squares error function, the regularization term belongs to the class of generalized Tikhonov regularizers. Direct minimization of the regularized error function provides a practical alternative to training with noise.
Resumo:
We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.
Resumo:
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
Resumo:
In most treatments of the regression problem it is assumed that the distribution of target data can be described by a deterministic function of the inputs, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input variables. However, the use of maximum likelihood to train such models would give highly biased results. In this paper we show how a Bayesian treatment can allow for an input-dependent variance while overcoming the bias of maximum likelihood.
Resumo:
The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.
Resumo:
We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.
Resumo:
We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator , rather than on the weight enumerator employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.
Resumo:
The replica method, developed in statistical physics, is employed in conjunction with Gallager's methodology to accurately evaluate zero error noise thresholds for Gallager code ensembles. Our approach generally provides more optimistic evaluations than those reported in the information theory literature for sparse matrices; the difference vanishes as the parity check matrix becomes dense.