927 resultados para Settlement Grout


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interaction analysis of an axially loaded single pile and pile group with and without a pile cap in a layered soil medium has been investigated using the two-dimensional photoelastic method. A study of the pile or pile group behaviour has been made, varying the pile cap thickness as well as the embedded length of the pile in the hard stratum. The shear stress distribution along the pile-soil interface, non-dimensionalized settlement values of the single pile and the interaction factor for the pile group have been presented. Wherever possible, the results of the present analysis have been compared with available numerical solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a plane stress solution for the interaction analysis of strip footing resting on (i) a non-homogeneous elastic half-plane and (ii) a non-homogeneous elastic layer resting on a rigid stratum has been presented. The analysis has been done using a combined analytical and FEM method in which the discretization of the half-plane is not required and thereby minimizes the computational efforts considerably. The contact pressure distribution and the settlement profile for the selected cases of varying modulus half-plane, which has more relevance to foundation engineering, have been given. Experimental verification through a photoelastic method of stress analysis has been carried out for the case of footing on Gibson elastic half-plane, and the contact pressure distribution thus obtained has been compared with the theoretical results. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When the variation of secondary compression, with log(10) t is non-linear, the quantification of secondary settlement through the coefficient of secondary compression, C-alpha epsilon, becomes difficult which frequently leads to an underestimate of the settlement, Log(10) delta - log(10) t representation of such true-compression data has the distinct advantage of exhibiting linear secondary compression behaviour over an appreciably larger time span. The slope of the secondary compression portion of the log(10) e - log(10) t curve expressed as Delta(log e)/(log t) and called the 'secondary compression factor', m, proves to be a better alternative to C-alpha epsilon and the prediction of secondary settlement is improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A knowledge of permeability and consolidation is essential in a number of engineering problems such as settlement, seepage, and stability of the structures. Since fly ash is used very widely for several geotechnical applications, there is a need to understand its permeability and consolidation behavior. This paper presents a detailed study conducted on two Indian fly ashes. It brings out the role of chemical composition (free lime) on the permeability and consolidation behavior of fly ashes. It is found that the permeability values computed based on grain-size distribution agree well with those obtained based on test data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the volume change behaviour of expansive soils/clays becomes a dire necessity to obtain engineering solutions to structures founded on these soils. Behaviour of expansive soils does not conform to the natural behaviour of fine grained soils. Most of the cases, the permissible heave/settlement forms the design criteria. The paper discusses the basic properties, the role of effective stress concept, basic mechanism in controlling the volume change behaviour, the role of double layer repulsion and its validity and certain basic considerations of footing resting on an expansive soil with respect to heave or settlement and the soil reinforcement as a possible engineering solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precompression, wherein the probable settlements are achieved at an accelerated pace through preloading, well before the construction is take up, has been widely used in areas of ground improvement with respect to soft clays. By applying a temporary surcharge load in excess or less than the permanent load, the soil achieves higher initial effective stress and when the final load is applied, the soil experiences, lower load increment ratio or negative load increment ratio. In this paper, based on the laboratory experiments conducted on cochin marine clays and Mangalore marine clays, attempts have been made to analyse the volume change behaviour of preloaded clays. It has been brought out that for a preloaded clay, the final load increment ratio has an important role in its behaviour. Effective preloading not only reduces the final settlement due to primary, the secondary consolidation settlement also gets reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fastest curve-fitting procedures are proposed for vertical and radial consolidations for rapid loading methods. In vertical consolidation, the next load increment can be applied at 50-60% consolidation (or even earlier if the compression index is known). In radial consolidation, the next load increment can be applied at just 10-15% consolidation. The effects of secondary consolidation on the coefficient of consolidation and ultimate settlement are minimized in both cases. A quick procedure is proposed in vertical consolidation that determines how far is calculated from the true , where is coefficient of consolidation. In radial consolidation no such procedure is required because at 10-15% the consolidation effects of secondary consolidation are already less in most inorganic soils. The proposed rapid loading methods can be used when the settlement or time of load increment is not known. The characteristic features of vertical, radial, three-dimensional, and secondary consolidations are given in terms of the rate of settlement. A relationship is proposed between the coefficient of the vertical consolidation, load increment ratio, and compression index. (C) 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM (R) and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to similar to 90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two of the aims of laboratory one-dimensional consolidation tests are prediction of the end of primary settlement, and determination of the coefficient of consolidation of soils required for the time rate of consolidation analysis from time-compression data. Of the many methods documented in the literature to achieve these aims, Asaoka's method is a simple and useful tool, and yet the most neglected one since its inception in the geotechnical engineering literature more than three decades ago. This paper appraises Asaoka's method, originally proposed for the field prediction of ultimate settlement, from the perspective of laboratory consolidation analysis along with recent developments. It is shown through experimental illustrations that Asaoka's method is simpler than the conventional and popular methods, and makes a satisfactory prediction of both the end of primary compression and the coefficient of consolidation from laboratory one-dimensional consolidation test data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar photovoltaic power plants are ideally located in regions with high insolation levels. Photovoltaic performance is affected by high cell temperatures, soiling, mismatch and other balance-of-systems related losses. It is crucial to understand the significance of each of these losses on system performance. Soiling, highly dependent on installation conditions, is a complex performance issue to accurately quantify. The settlement of dust on panel surfaces may or may not be uniform depending on local terrain and environmental factors such as ambient temperature, wind and rainfall. It is essential to investigate the influence of dust settlement on the operating characteristics of photovoltaic systems to better understand losses in performance attributable to soiling. The current voltage (I-V) characteristics of photovoltaic panels reveal extensive information to support degradation analysis of the panels. This paper attempts to understand performance losses due to dust through a dynamic study into the I-V characteristics of panels under varying soiling conditions in an outdoor experimental test-bed. Further, the results of an indoor study simulating the performance of photovoltaic panels under different dust deposition regimes are discussed in this paper. (C) 2014 Monto Mani. Published by Elsevier Ltd. This is all open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reinforcing soil with fibers is a useful method for improving the strength and settlement response of soil. The soil and fiber characteristics and their interaction are some of the major factors affecting the strength of reinforced soil. The fibers are usually randomly distributed in the soil, and their orientation has a significant effect on the behavior of the reinforced soil. In the paper, a study of the effect of anisotropic distribution of fibers on the stress-strain response is presented. Based on the concept of the modified Cam clay model, an analytical model was formulated for the fiber-reinforced soil, and the effect of fiber orientation on the stress-strain behavior of soil was studied in detail. The results show that, as the inclination of fibers with the horizontal plane increased, the contribution of fibers in improving the strength of fiber-reinforced soil decreased. The effect of fibers is maximum when they are in the direction of extension, and vice versa. (C) 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of 2 degrees C than MODIS with an error of 3 degrees C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 degrees C & for MODIS data is 3.7 degrees C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on understanding the seismic response of geosynthetic reinforced retaining walls through shaking table tests on models of modular block and rigid faced reinforced retaining walls. Reduced-scale models of retaining walls reinforced with geogrid layers were constructed in a laminar box mounted on a uniaxial shaking table and subjected to various levels of sinusoidal base shaking. Models were instrumented with ultrasonic displacement sensors, earth pressure sensors and accelerometers. Effects of backfill density, number of reinforcement layers and reinforcement type on the performance of rigid faced and modular block walls were studied through different series of model tests. Performances of the walls were assessed in terms of face deformations, crest settlement and acceleration amplification at different elevations and compared. Modular block walls performed better than the rigid faced walls for the same level of base shaking because of the additional support derived by stacking the blocks with an offset. Type and quantity of reinforcement has significant effect on the seismic performance of both the types of walls. Displacements are more sensitive to relative density of the backfill and decrease with increasing relative density, the effect being more pronounced in case of unreinforced walls compared to the reinforced ones. Acceleration amplifications are not affected by the wall facing and inclusion of reinforcement. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of the laboratory investigation performed on clay beds reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials are reported in this paper. To use bamboo effectively, three-dimensional cells (similar to geocells) and two-dimensional grids (similar to geogrids) are formed using bamboo (termed bamboo cells and bamboo grids, respectively). The performance of clay beds reinforced with bamboo cells and bamboo grids is compared with that of clay beds reinforced with geocells and geogrids. The bearing capacity of the clay bed increased by six times when a combination of geocell and geogrid was used. The ultimate bearing capacity of the clay bed reinforced with bamboo cell and bamboo grid was found to be 1.3 times more than that of clay bed reinforced with geocell and geogrid. In addition, substantial reduction in the footing settlement and the surface deformation was observed. The tensile strength and surface roughness of bamboo were found to be nine times and three times, respectively, higher than geocell materials. The bamboo was treated chemically to increase its durability. Although the performance of bamboo was reduced by 15-20% after the chemical treatment, its performance was better than its commercial counterparts. (C) 2014 American Society of Civil Engineers.