988 resultados para Setor de óleo e gás
Resumo:
A final 241 µM of ascorbyl palmitate and 555 µM of the following antioxidants separately: BHA, myricetin and quercetin standards, and extracts of Byrsonima crassifolia, Inga edulis or Euterpe oleracea, were added to crude açai oil and submitted to the oxidation process at 60 ºC for 11 days. Among the antioxidants used, only the myricetin standard showed the ability to defer the oxidation process until the third day of treatment. B. crassifolia, I. edulis and E. oleracea extracts showed no preventive capacity against the oxidation process, despite their high concentration phenolic compounds and antioxidant activities.
Resumo:
Topiramate and the other frequently co-administered antiepileptic drugs carbamazepine, phenytoin and phenobarbital were determined in 100 µL plasma samples by gas chromatography with nitrogen phosphorus detection (GC-NPD), after a one-step liquid-liquid extraction with ethyl acetate, followed by flash methylation with trimethylphenylammonium hydroxide. Total chromatographic run time was 12.5 min. Intra-assay and inter-assay precision was 2.5-7.3% and 1.6-5.2%, respectively. Accuracy was 100.1-104.2%. The limit of quantitation was 1 µg mL-1 for all analytes, proving suitable for routine application in therapeutic drug monitoring of antiepileptic drugs.
Resumo:
The aim of this work was to synthesize a polyurethane polymer matrix using castor oil as a polymer chain modifier, whose characteristics can be adjusted for use as a binder in the manufacture of energetic materials such as propellant and pyrotechnics for aerospace use. We attempted the partial substitution of hydroxyl-terminated polybutadiene (HTPB), a pre-polymer commonly used as a starting polyol in obtaining energetic matrix composites. Thermoanalytical techniques were employed to characterize the material based on castor oil and the unmodified HTPB. The results showed similar behaviors, confirming the possibility of their use as polymer matrix composites through the proposed adaptations.
Resumo:
The aim of this work was to produce biosurfactants through submerged fermentation using microorganisms isolated from soil contaminated with diesel. Microorganisms were isolated, characterized by the production of biosurfactants, and used to study the influence of type, induction and concentration of ammonium sulfate as a nitrogen source in the culture medium. The microorganisms that showed best results, in terms of production of biosurfactants, were identified as being of the genus Pseudomonas and Bacillus. The biosurfactants produced proved capable of reducing the surface tension of the media to 39 mN/m and 34 mN/m, respectively. Higher biosurfactant production was obtained in the medium containing 1% soybean oil without ammonium sulfate.
Resumo:
Croton zehntneri, a plant native to northeastern Brazil, is widely used in folk medicine to treat gastrointestinal problems and has rich essential oil content. The essential oil of C. Zehntneri was analyzed by GC-MS, and its inclusion complex with β-cyclodextrin (β-CD) was characterized by both vibrational spectroscopy and differential scanning calorimetry (DSC). Estragol was the major component identified in the essential oil by the study. IR spectra indicated an interaction of β-CD with essential oil from C. zehntneri, a finding corroborated by the stability constant and scanning calorimetry. Microencapsulation within β-CD has the potential to mask sensory attributes and increase aqueous solubility of oils, thereby improving their applicability as drugs.
Resumo:
The quality of biodiesel is extremely important for its commercialization and use; oxidation of biodiesel is a critical factor because it decreases the fuel storage time. A commercial biodiesel was mixed with synthetic antioxidants, according to a simplex-centroid experimental mixture design, and its stability was evaluated through induction period and activation energy. In all trials, addition of antioxidants increased activation energy in the mixtures containing tertiary butylhydroquinone (TBHQ). When a mixture containing 50% TBHQ and 50% butylated hydroxyanisole was used, synergistic effect was observed, and the major activation energy obtained was 104.43 kJ mol-1.
Resumo:
Enzymatic conversion of gaseous substrates into products in aquo-restricted media, using enzymes or whole cells (free and immobilized) as biocatalysts, constitutes a promising technology for the development of clearer processes. Solid-gas systems offer high production rates for minimal plant sizes, allow important reduction of treated volumes, and permit simplified downstream processes. In this review article, principles and applications of solid-gas biocatalysis are discussed. Comparisons of its advantages and disadvantages with those of the organic- and aqueous-phase reactions are also presented herein.
Resumo:
This aim of this work was to compare two methods for copper determination in insulating oils from power transformers by GFAAS. The first method was extraction induced by emulsion breaking, which determined the preconcentration of copper in an aqueous solution and exhibited a limit of quantification of 0.27 µg L-1. Also, a second method based on the direct introduction of samples into GFAAS in the form of detergent emulsions, prepared with Triton X-114 and HNO3, was investigated. In this case, the limit of quantification was 1.7 µg L-1. Seven samples of used oils were successfully analyzed by both methods.
Resumo:
Thermal and spectroscopic analyses of essential oil extracted from Siparuna guianensis Aublet, an aromatic plant belonging to medicinal ethnobotany family Siparunaceae, were carried out. The plant is known throughout the North and Northeast of Brazil by the name negramina and has wide application as a natural insect repellent. Thermogravimetric analyses were correlated with the Arrhenius Equation to provide kinetic parameters of evaporation, including activation energy and frequency factor. Differential scanning calorimetric analysis showed the presence of an exothermic oxidation peak, probably as a result of transformations and decomposition of the solid structure before melting.
Resumo:
Rice husk ash (RHA) is used as a silica source for several purposes, among them to obtain metal catalysts, as was done in this work. The catalysts were characterized by chemisorption, physisorption, thermal analyses (TG, DSC), X-ray diffraction, X-ray fluorescence, temperature-programmed reduction and scanning electron microscopy. The catalysts synthesized with different Ni loadings supported on RHA were applied to the reaction of dry reforming of methane. The reaction was tested at three temperatures of catalytic reduction (500, 600 and 700 ºC). All synthesized catalysts were active for the studied reaction, with different H2/CO ratios achieved according to degree of metallic dispersion.
Resumo:
Commercial and synthetic mesoporous aluminas impregnated with potassium carbonate were characterized by X-ray diffraction (XRD), nitrogen physisorption, infrared spectroscopy and 27Al MAS NMR. The activities in the transesterification reaction of sunflower oil with methanol for biodiesel production were evaluated. 27Al MAS NMR spectra evidenced the presence of AlIV and AlVI in the samples, and also of AlV sites in the mesoporous synthesized alumina, which disappeared after impregnation with potassium salt followed by calcination. All aluminas containing potassium were active for biodiesel production from sunflower seed oil, with high conversions by both conventional heating and microwave irradiation.
Resumo:
Polychlorinated biphenyls (PCBs) were widely used between 1940 and 1970 as an insulating fluid for transformers and capacitors. However, they are bioaccumulative and potentially carcinogenic and, according to the 2001 Stockholm Convention, must be eliminated by 2025. In Brazil, they have been gradually eliminated but contaminated equipment remains. The Brazilian official standard for PCBs content in oil analysis is the ABNT NBR 13882 and there is also the IEC 61619 International Standard, both based on GC-ECD quantification. This work identified the inefficiency of these analytical methods and highlights potential failures which generated discrepancies on quantification of these contaminants. It was observed that the IEC 61619 is superior to ABNT NBR 13882 in analytical criteria, but has problems with the inefficiency of the adsorbent material used in pretreatments for removal of oxidation products from oil where these adsorbents adsorbed some PCBs molecules, causing errors in quantification.
Resumo:
Ultrasound as a metrology tool has many applications in health care, industrial, and chemical analyses. Ultrasonic techniques are rapid, low-cost, non-invasive, and highly repeatable. Although ultrasound can be used to measure emulsions, no effort had been made thus far to optimize its sensitivity for metrological analysis. In this work, a technique for analyzing oil in water was validated. The wave velocity and attenuation were chosen as the ultrasonic parameters. The technique was implemented in the boundary region established by law for effluents from industrial plants involved with biofuel manufacturing. A technical effort of this study was to establish stable emulsions in concentrations close to the desired limit of study. The phase behaviours of pseudo-ternary oil, sodium chloride, and sodium lauryl sulphate were studied. The composition in the widest region of the diagram allowed for the formation of a stable emulsion, from which the ultrasound measurement was carried out. An analytical curve was obtained using ultrasonic attenuation to determine the content of oils and greases in wastewater ranging 15–240 ppm. The speed of sound did not appear to be an applicable parameter for this application. The technique was demonstrated to be an important alternative solution for the continuous monitoring of wastewater with regard to oil concentrations.