987 resultados para Sedimentary rocks
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cu-Au mine of Chapada is located in the municipality of Alto Horizonte, in the northwestern portion of Goiás state and is inserted in the geological context of the Brasilia Belt, specifically the Mara Rosa Magmatic Arc, which hosts important deposits of Au and Cu-Au. The rocks found in the study area belong mainly to the Volcano-Sedimentary Sequence of Mara Rosa and are composed of basic to acidic metavolcanic rocks, psammiticpellitic metasedimentary rocks, chemical rocks and also hydrothermal products. Late intrusions occur and are represented by pegmatitic dikes and tonalitic bodies. The ore deposit of the Chapada mine is formed predominantly by the chalcopyrite-pyritemagnetite association, where pyrite is the most abundant mineral. Through the structural mapping of the mining fronts, it was able to recognize three deformational phases (Dn, Dn +1, Dn +2). During the Dn phase, isoclinal recumbent folds were formed, in association with amphibolites facies metamorphism. Later, in phase Dn +1, there was formation of drag folds and intrafolial folds in association with retrograde metamorphism in the greenschist facies. The deformational phase Dn +2, in its turn, was responsible for late symmetrical folding of the foliation, with NS and EW axes, resulting in an interference pattern of the dome-and-basin type
Resumo:
The Lavra Velha gold prospect is located in Ibitiara city, in the Espinhaço Setentrional physiographic domain, on the west edge of Chapada Diamantina – central part of Bahia. It is inserting on Gavião Block, a compartment of São Francisco Cráton (Almeida, 1977). The Lavra Velha gold dump is formed by an association of hydrothermal breccia lodged in acid and intermediate rocks, classifying in tonalite, granodiorite and diorite, with high alteration, cut off by a vein and venules system constituted by hydrothermal association composed by hematite, tourmaline, quarz and sericite, located in the north limit of Ibitiara granite. In the regional geological context the area is represented by Archaean rocks (Paramirim Complex) and Paleoproterozoic rocks (Ibitiara granitoid and Matinos Granite) constituted the basement, following by paleo to mesozoic pluton-vulcanic-sedimentary association of Rio dos Remédios Group, intruded by mafic rocks. It was used geochemistry and petrographic analysis compiling to field works data to characterize the rocks where the gold mineralization is inserting. Previously these rocks were classifying in volcanic rocks of Novo Horizonte Formation. Developing this monograph’s work the petrogenetic characteristics suggesting that these rocks called volcanic actually belong to Ibitiara granitoid as a portion more metamorphosed. The green schist is the predominant metamorphism in the area with low deformation, associated to high concentration of fluid circulating. The hydrothermal alteration is the process responsible for rocks modifications and strong sericitization generalize
Resumo:
The study area is located in the geological parameters of the Pilar de Goiás Greenstone Belt (GO), it is part of the Pilar de Goias Group’s meta-volcano-sedimentary sequence. This is a homoclinal package constituted by terrigenous metassediments containing intercalations of meta-ultramafic rocks and iron formations. The units that were informally named in this work, are interpreted as belongs to the Serra do Moinho Formation. Through mineralogical associations the area’s metamorphism were classified as high greenschist facies garnet zone. Prior to this work were detected in the area, through soil samples, some auriferous anomalies. One of the objectives of this work is the detection of possibles hidrotermal alterations related to these anomalies presents in the study area
Resumo:
Main occurrence of Cu-Au in Goias Magmatic Arc, the Chapada mine fits into the geological context of the Brasilia Fold Belt, specifically in the Mara Rosa Magmatic Arc. Four targets, named Hidrotermalito Norte and Sul, NW Chapada Mine Portion and Suruca, are situated in this context, which includes ortogneisses and rocks from the Mara Rosa volcanic-sedimentary sequence. All these targets have been studied due to the possibility of presenting a great potential in Cu-Au, as well as the Chapada mine. Hidrotermalitos Norte and Sul targets presents four lithological sequences, which were identified as: quartz-muscovite schist; muscovite quartzites and kyanite quartzites; quartz-biotite-amphibole schist with pyrite and epidote-amphibole-biotite gneisses with muscovite; muscovite-biotite gneisses. They are metamorphosed to amphibolites facies and retrogressive greenschist facies. Sulfetation represented mainly by pyrite. In the NW Chapada Mine Portion, three main lithological groups were identified and classified as biotite gneisses; honblende-quartz-biotite-schist; amphibolites, with the first group metamorphosed in greenschist facies (low grade), and the other two groups metamorphosed in amphibolites facies, with subsequent retrogressive metamorphism in greenschist facies. Sulfetation is represented by chalcopyrite and pyrite. Finally, also three main lithological groups were identified in the Suruca target, classified as garnet-chlorite-epidote-eiotite gneiss; biotite gneiss and chlorite-biotite gneiss with epidote and muscovite; muscovite-quartz schist, all them metamorphised in amphibolites, with retrometamorphism in greenschist facies. Sulfetation represented by pyrite and sphalerite
Resumo:
The Ambrósio dome is a granodioritic batholiths of elliptical geometry, 40km length in the N-S direction and variable width of up to 8 km, has a weakly deformed nucleus with intensely deformed margins, in its northern portion is intruded in orthogneiss that belong to the Archean basement, and its southern part comes in direct contact with the volcano-sedimentary sequence of Paleoproterozoic Rio Itapicuru Greenstone Belt (RIGB), Bahia. From geological mapping on 1:25:000 scale were recognized two structural domains, termed West Domain and East Domain. From investigation of these domains was identified a major shear zone, which puts in contact two distinct stratigraphic sequences, one west, consisting primarily of metavulcanic and metapyroclastic rocks with records of low-grade regional metamorphism, and east discontinuity a metassedimentary domain, with record of gradational contact metamorphism, deformation and compression generated from the rise of Ambrosio Pluton. Such records put into question the structural and stratigraphic models in the literature so far
Resumo:
The Roosevelt-Domain Aripuanã that by Filho et al 2004 is characterized by a metavolcanic sedimentary sequence, containing acidic to interemediary metavolcanic rocks and clastic and chemical sediments, deformed and metamorphosed at low grade, with U-Pb age of 1.743 +- 4 Ma, (by Granito Zé do Torno), and circumscribed bodies of granites late to post-orogenic (Aripuanã)...
Resumo:
The N6 Plateau presents an iron-ore occurence in Carajás Mineral Province, standing near to actually operating deposits. Geological mapping in 1:10,000 scale and integration of geochemical, geophysical, petrography and drilling turns possible interpretation of his geological evolution. The mapped area has lithotypes from Archean Grão Pará Group, comprising very lowgrade metamorphic basic rocks and iron formation and an Proterozoic sedimentary association of conglomeratic sandstones called as Caninana Unity. The structural geology in given by a regional scale homoclinal, where the Grão Pará Group strata dips towards SW, as a part of the Northern Limb of the Carajás Fold. Subsequent deformation associated to the installation of the Carajás Shear Zone presents as E-W fold axis. Geochemical evidence permits to consider de Parauapebas Formation as the rocks which has been hydrothermally-altered to outsourcing fluids responsible to deposition of iron formations in the oceanic system, including different signatures which can be interpreted as possible sub-embayments in the Carajás Basin. The iron ore in the area occurs in subsurface as very fine friable hematite generated by supergenous enrichment of the iron formation. The conceived geologic model differs from the current academic proposal on the fact that hydrothermal alteration has been involved on the jaspelite enrichment. Metamorphism on the Parauapebas Formation presents paragenesis considered as ocean-floor metamorphism which precedes de deformation insofar as the rocks show no tectonic fabric referring to shallow crust evolution. Geophysical methods such as magnetometry and gravimetry presents excellent results for structural interpretation in uneven exposed terrain
Resumo:
Geological and geomorphological mapping is an important tool for the characterization of physical environment, thus enabling the planning and use of areas more efficiently. This work represents a geological- geomorphologic mapping on the scale of 1:20.000 in the rural area of Quirinópolis – GO town, where outcrop rocks of Paraná Sedimentary Basin, specifically the Bauru Group. Through the methodology of analysis of integrated elements of the physical environment, it was possible to delineate geological- geomorphological five units, which were characterized as lithology, topography, soil conditions, and operating processes, and the development of weathering profiles bring of great importance for planning of land use as occupation thus avoiding further degradation of the physical environment
Resumo:
The study area of the Guarda-Mor target (Israelândia-GO) contextualizes the terrains of the estaern portion of the Arenópolis Magmatic Arc, more accurately, the Neoproterozoic associations inserted in the field of the Jaupaci volcano-sedimentary sequence. The mapped area is located in the central-western of Goiás state. The presente paper has as main objective to characterize the structural, petrographic and litogeochemistry of the target rocks beyond to compare these factors with the Mina Bacilândia rocks (Fazenda Nova-GO) in order to assess the genetic similarity of volcano-sedimentary units and deposits associated. The Guarda-Mor target is represented by the Jaupaci metavolcanic rocks sequence presenting bimodal volcanism. This sequence consists in metafelsic rocks like sericite/muscovite quartz schist, phyllite and metarriolites and/or metariodacites with calc-alkaline geochemical signature and metamafic rocks with tholeiitic character formed by actinolite - chlorite schist and chlorite - quartz schist. Besides the package of supracrustal rocks also can be observed the occurrence of a local intrusion syn- to late - tectonic named Granito Subvulcânico. In the study area beyond the marked volcanism also seen an event of crustal melting granitogênese evidenced by the presence of 2 granites at the east and the west of the map, Granito Israelândia and Granito Iporá respectively. Structural analysis both at the macro and micro have identified 3 deformation phases. The types of rock on the region record features in the metamorphic facies top and down. These features were subdivided into 3 metamorphic areas: the east and West areas show thermal metamorphism due to intrusion of adjacente granites while the central domain displays features of regional metamorphism. Gold mineralization of the Guarda –Mor deposit target suggests a possible structural control beyond pronounced the hydrothermal alteration. The mineralization may also be...
Resumo:
In the Serra de Jacobina, localized in the North Central portion of the state of Bahia, occours the Jacobina Group. It’s a sedimentary basin and the gold deposit is stocked on the basal portion, which consist on quartzites intercalated with oligomítico metaconglomerates of Serra do Córrego Formation. There are controversies about the origin of the gold mineralization, but the currently most accepted hypothesis corresponds to a paleoplacer deposit with subsequent ore remobilization and concentration by hydrothermal process. The sulphidation is one of the main results of hydrothermal process, which was more detail characterized, besides identifying if there was more than one sulfides phase generation and its relationship with gold mineralization. The analyzes were performed from the main reef's (metaconglomerates mineralized levels) of Mine Canavieiras: Maneira, Holandez, Liberino, Piritoso, MU and LU. Chemical analyzes semi-quantitative were developed with EDS in MEV and also petrographics analyses. The main sulfide is pyrite, followed by chalcopyrite. Six groups of pyrite were classified according with chemical composition, however they show similarities in their habit and occurrence. Were identified four types of chlorite, labeled A, B, C, D. Gold occurs in free form, associate to pyrites, to Fe-Ti-Muscovite, to chlorite type B and to microfractures with iron hydroxide. Gold presents three different compositions: pure, with Ag or associated with U-Zr. The results of chemical analysis showed that the hydrothermal process have as their main source, ultramafic rocks present in the Jacobina Basin
Resumo:
Eight Mesoproterozoic granite suites are recognized in the Rondônia Tin Province, called Serra da Providência Intrusive Suite (1606-1532 Ma), Rio Crespo Intrusive Suite (1500 Ma), St. Anthony Intrusive Suite (1406 Ma), Teotonio Intrusive Suite (1387 Ma ), Santa Clara Intrusive Suite (1082-1074 Ma) and Younger Granites of Rondônia Intrusive Suite (998-974 Ma), represent successive magmatic type A (anorogenic) and the intra-plate basement rocks intruded in the metamorphic complex named Jamari separated into two distinct lithologic associations, a ortogneiss (U-Pb from 1.76 to 1.73 Ga) and a paragneiss (1675 + / - 12 Ma). Tin mineralization are widely found in the Tin Province and are associated with granitic intrusions known Mesoproterozoic more closely with the last two magmatic events, represented by the Santa Clara and Younger Granites of Rondônia. The tin mineralization are of primary and secondary, with the primary form deposits of different structural styles and is presented in the form of endo-or exogreisens, veins, stockworks and pegmatites. The secondary mineralization are related to natural processes of weathering and erosion of primary rocks, leading to placer deposits classified as colluvial, eluvial and colluvial-alluvial. The Target Alvo Sol Nascente is located in the central-eastern Rondônia Tin Province and has basement rocks of the metamorphic-magmatic region represented by Jamari Complex intrusive suites and Sierra Providence and Rio Crespo. The last tectonic event spa in the area was responsible for the intrusion of Younger Granites of Rondônia (São Carlos and Caripuanã Massifis). The anomalous levels of tin, sufficient to operate (Mina Rising Sun), indicate that there was possibly mineralization event, evidenced by pegmatite veins well defined, easily found relatively close to mine. Plaque deposits associated with Quaternary sedimentary sequences can also be observed
Resumo:
The study area is included in the geological context of the Goias Median Massif, a region where there are associations of Archean granite-gneiss complex (Block Moquém) and a Paleoproterozoic metavolcano-sedimentary sequence ( Pilar greenstone belt ). At the south of area, the greenstone sequence is partially overlain by Neopreoterozoic metasediments of the Araxá Group. The lithostratigraphic units of the Pilar greenstone belt define a shift from about N30W direction (north of the deposit) to N60 and 70W in the region south of the Jordino deposit, where are truncated by the Araxá Group rocks. Mineralogical associations described in this paper allow to indicate that the regional metamorphism that affected the rocks of the greenstone belt and Araxá Group, in the mapped area, reached the upper greenschist facies (garnet zone). Data obtained during mapping and by microtectonics analysis allow to indicate the existence of at least four deformational events that acted on the rocks of the Guarinos greenstone belt and Araxá Group, represented by the phases called Dn-1, Dn, Dn + 1 and Dn+2. It was observed that the pattern of sulphide porfitoblasts in mineralized levels is similar to garnet, biotite and muscovite porfiroblasts (tardi to post Dn) that marks the metamorphic peak of the area
Resumo:
The study area is includes in the geological context of Arenópolis Magmatic Arc, a region where there are neoproterozoic associations of granodioritic and tonalitic composiotion. (Ortogneisses of the western Goiás) and sequences metavolcanic-sedimentary (Jaupaci Metavolcanic-sedimentary Sequence ). In the mapped area, both units are covered by a cover-laterite. The Ortogneisses from Goiás West consist of a source granodioritic gneisses, corresponding to the Biotite granodiorite gneisse, and also by tonalitic gneiss composition corresponding to Metatonalit. The Jaupaci Metavolcanic-sedimentary Sequence is formed by Chlorite Schist (Metabasalt), Biotite Schist (Metadacite) and Sericite Schist (Metarhyolite), and even intrusions Sin/Tardi e Post Tectonic, granite to diorite composition (Diorites), and alson tonalitic (Bacilandia Tonalite). Post tectonic intrusions are observed, wich were Hornblend Diorite Porphyry and Lamprophyres, Structural analysis allowed the identification of three deformational events, Dn-1, Dn and Post-Dn. The first event is associated with a bygone foliation, lineation which generates an intersectional event, generating the foliation Sn, this being the most important structure in the study area, generating even the type mineral lineation and stretch. The last deformational event is characterized by folds on different scales, affecting the Sn foliation. The rocks of the region have features s active hydrothermal and regional metamorphism, and are composed os assembly indicative of mineralogical facies metamorphism Green Schist, in chlotite zone, with evidence of retro metamorphism. Locally there are sulfides as pyrite, arsenopyrit and pyrhotite, and te mineralization is associated with the arsenopyrite
Resumo:
The Golfinho Field is located in the offshore region of the Espírito Santo Basin. Its importance is linked to the current average production about 19,000 barrels of oil per day, in turbidite reservoirs , giving it the nineteenth placement among the largest oil fields producing of Brazil. By interpretation and correlation’s methods based on 2D seismic sections and geophysical well logs, the study of tectonic-sedimentary evolution of major Golfinho Field’s reservoirs, which are located in Maastrichtian , aims understand and characterize the geological model of the area for the purpose of identify the main structures and types of reservoirs, improving the geological understanding of the area and using this knowledge at similar sets, that may present exploratory success in similar cases. By structural contour maps and geological cross-sections generated since time-depth conversion , the results defined for the geological model of the area , two distinct tectonic styles: a distensinal tectonics style , characterized by grabens and horsts , which belongs to rift phase, and a salt tectonics style, characterized by salt domes , listric faults and folds rolllover folds type, which belongs to marine phase . The interpretation of seismic sections and subsequent analysis of the main deformations present in the Maastrichtian reservoirs rocks ( turbidites ) showed that the northern region of the field is the most affected by salt tectonics . As for reservoirs, it was concluded to be associated to tectonics formed by rollover folds type, being older than listric faults