962 resultados para Seasonal water demand


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on observations of dense shelf water overflows and Antarctic Bottom Water (AABW) formation along the continental margin of the Adelie and George V Land coast between 140°E and 149°E. Vertical sections and bottom layer water mass properties sampled during two RVIB Nathaniel B Palmer hydrographic surveys (NBP00-08, December 2000/January 2001 and NBP04-08, October 2004) describe the spreading of cold, dense shelf water on the continental slope and rise from two independent source regions. The primary source region is the Adelie Depression, exporting high-salinity dense shelf water through the Adelie Sill at 143°E. An additional eastern source region of lower-salinity dense shelf water from the Mertz Depression is identified for the first time from bottom layer properties northwest of the Mertz Sill and Mertz Bank (146°E-148°E) that extend as far as the Buffon Channel (144.75°E) in summer. Regional analysis of satellite-derived ice production estimates over the entire region from 1992 to 2005 suggests that up to 40% of the total ice production for the region occurs over the Mertz Depression and therefore this area is likely to make a significant contribution to the total dense shelf water export. Concurrent time series from bottom-mounted Microcats and ADCP instruments from the Mertz Polynya Experiment (April 1998 to May 1999) near the Adelie Sill and on the upper continental slope (1150 m) and lower continental rise (3250 m) to the north describe the seasonal variability in downslope events and their interaction with the ambient water masses. The critical density for shelf water to produce AABW is examined and found to be 27.85 kg/m**3 from the Adelie Depression and as low as 27.80 kg/m**3 from the Mertz Depression. This study suggests previous dense shelf water export estimates based on the flow through the Adelie Sill alone are conservative and that other regions around East Antarctica with similar ice production to the Mertz Depression could be contributing to the total AABW in the Australian-Antarctic Basin.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal changes in d15N values of sinking particles collected with sediment traps in the Benguela upwelling regime off southwest Africa mirrored variations in the input of inorganic nitrogen to the surface water. Reductions in d15N (to as low as 2.5 per mil) corresponded to low sea surface temperatures during austral spring and late austral autumn/early winter, indicating increased nitrate availability due to the presence of recently upwelled water. High particulate fluxes accompanied the low d15N values and sea surface temperatures, reflecting increased productivity, fueled by the upwelled nutrients. High d15N values (up to 13.1 per mil) coincided with high sea surface temperatures and low particle fluxes. In this area, the seaward extension of upwelling filaments, which usually occurs twice yearly, brings nutrient-rich water to the euphotic zone and leads to elevated productivity and relatively lower d15N values of the particulate nitrogen. Satellite images of ocean chlorophyll show that productivity variations coincide with d15N changes. The observed isotopic pattern does not appear to have been caused by variations in the species composition of the phytoplankton assemblage. Calculations based on d15N of the sinking particulate nitrogen show that the surface nitrate pool was more depleted during late austral summer/early fall and mid-winter and that supply exceeded demand during the intense spring bloom and in late austral fall. The main uncertainty associated with these estimates is the effect of diagenesis on d15N and possible variability in preservation of the isotope signal between periods of high and low particle flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium/hydrogen (D/H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor epsilon between fatty acids and water ranged between -172 per mil and -237 per mil, the algal-derived polyunsaturated fatty acid nC20:5 being the most D-depleted and nC18:0 the least D-depleted fatty acid. The D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The epsilon-lipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 PUFA, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative epsilon-lipid/water values) can be explained by an increased contribution by heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a useful tool to assess the community metabolism of coastal plankton.