900 resultados para Search engine results page
Resumo:
This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance (i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-stateengine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel consumptions in certain mission phases. Excel macrocode, Visual Basic for Application, and Excel neuron cells are combined to facilitate Excel software to perform these cycle analyses. These user-friendly programs compute and plot the data sequentially without forcing users to open other types of post-processing programs.
Resumo:
The main purpose of this project is to understand the process of engine simulation using the open source CFD code called KIVA. This report mainly discusses the simulation of the 4-valve Pentroof engine through KIVA 3VR2. KIVA is an open source FORTRAN code which is used to solve the fluid flow field in the engines with the transient 2D and 3D chemically reactive flow with spray. It also focuses on the complete procedure to simulate an engine cycle starting from pre- processing until the final results. This report will serve a handbook for the using the KIVA code.
Resumo:
The reserves of gasoline and diesel fuels are ever decreasing, which plays an important role in the technological development of automobiles. Numerous countries, especially the United States, wish to slowly decrease their fuel dependence on other countries by producing in house renewable fuels like biodiesels or ethanol. Therefore, the new automobile engines have to successfully run on a variety of fuels without significant changes to their designs. The current study focuses on assessing the potential of ethanol fuels to improve the performance of 'flex-fuel SI engines,' which literally means 'engines that are flexible in their fuel requirement.' Another important area within spark ignition (SI) engine research is the implementation of new technologies like Variable Valve Timing (VVT) or Variable Compression Ratio (VCR) to improve engine performance. These technologies add more complexity to the original system by adding extra degrees of freedom. Therefore, the potential of these technologies has to be evaluated before they are installed in any SI engine. The current study focuses on evaluating the advantages and drawbacks of these technologies, primarily from an engine brake efficiency perspective. The results show a significant improvement in engine efficiency with the use of VVT and VCR together. Spark ignition engines always operate at a lower compression ratio as compared to compression ignition (CI) engines primarily due to knock constraints. Therefore, even if the use of a higher compression ratio would result in a significant improvement in SI engine efficiency, the engine may still operate at a lower compression ratio due to knock limitations. Ethanol fuels extend the knock limit making the use of higher compression ratios possible. Hence, the current study focuses on using VVT, VCR, and ethanol-gasoline blends to improve overall engine performance. The results show that these technologies promise definite engine performance improvements provided both their positive and negative potentials have been evaluated prior to installation.
Resumo:
OBJECTIVE: Recommendations for lower extremity osteoarthritis (OA) and exercise have been primarily based on knee studies. To provide more targeted recommendations for the hip, we gathered evidence for the efficacy of exercise for hip OA from randomized controlled trials. METHODS: A bibliographic search identified trials that were randomized, controlled, completed by >or=60% of subjects, and involved an exercise group (strengthening and/or aerobic) versus a non exercise control group for pain relief in hip OA. Two reviewers independently performed the data extraction and contacted the authors when necessary. Effect sizes (ES) of treatment versus control and the I(2) statistic to assess heterogeneity across trials were calculated. Trial data were combined using a random-effects meta-analysis. RESULTS: Nine trials met the inclusion criteria (1,234 subjects), 7 of which combined hip and knee OA; therefore, we contacted the authors who provided the data on hip OA patients. In comparing exercise treatment versus control, we found a beneficial effect of exercise with an ES of -0.38 (95% confidence interval [95% CI] -0.68, -0.08; P = 0.01), but with high heterogeneity (I(2) = 75%) among trials. Heterogeneity was caused by 1 trial consisting of an exercise intervention that was not administered in person. Removing this study left 8 trials (n = 493) with similar exercise strategy (specialized hands-on exercise training, all of which included at least some element of muscle strengthening), and demonstrated exercise benefit with an ES of -0.46 (95% CI -0.64, -0.28; P < 0.0001). CONCLUSION: Therapeutic exercise, especially with an element of strengthening, is an efficacious treatment for hip OA.
Resumo:
This report is a PhD dissertation proposal to study the in-cylinder temperature and heat flux distributions within a gasoline turbocharged direct injection (GTDI) engine. Recent regulations requiring automotive manufacturers to increase the fuel efficiency of their vehicles has led to great technological achievements in internal combustion engines. These achievements have increased the power density of gasoline engines dramatically in the last two decades. Engine technologies such as variable valve timing (VVT), direct injection (DI), and turbocharging have significantly improved engine power-to-weight and power-to-displacement ratios. A popular trend for increasing vehicle fuel economy in recent years has been to downsize the engine and add VVT, DI, and turbocharging technologies so that a lighter more efficient engine can replace a larger, heavier one. With the added power density, thermal management of the engine becomes a more important issue. Engine components are being pushed to their temperature limits. Therefore it has become increasingly important to have a greater understanding of the parameters that affect in-cylinder temperatures and heat transfer. The proposed research will analyze the effects of engine speed, load, relative air-fuel ratio (AFR), and exhaust gas recirculation (EGR) on both in-cylinder and global temperature and heat transfer distributions. Additionally, the effect of knocking combustion and fuel spray impingement will be investigated. The proposed research will be conducted on a 3.5 L six cylinder GTDI engine. The research engine will be instrumented with a large number of sensors to measure in-cylinder temperatures and pressures, as well as, the temperature, pressure, and flow rates of energy streams into and out of the engine. One of the goals of this research is to create a model that will predict the energy distribution to the crankshaft, exhaust, and cooling system based on normalized values for engine speed, load, AFR, and EGR. The results could be used to aid in the engine design phase for turbocharger and cooling system sizing. Additionally, the data collected can be used for validation of engine simulation models, since in-cylinder temperature and heat flux data is not readily available in the literature..
Resumo:
There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.
Resumo:
In-cylinder pressure transducers have been used for decades to record combustion pressure inside a running engine. However, due to the extreme operating environment, transducer design and installation must be considered in order to minimize measurement error. One such error is caused by thermal shock, where the pressure transducer experiences a high heat flux that can distort the pressure transducer diaphragm and also change the crystal sensitivity. This research focused on investigating the effects of thermal shock on in-cylinder pressure transducer data quality using a 2.0L, four-cylinder, spark-ignited, direct-injected, turbo-charged GM engine. Cylinder four was modified with five ports to accommodate pressure transducers of different manufacturers. They included an AVL GH14D, an AVL GH15D, a Kistler 6125C, and a Kistler 6054AR. The GH14D, GH15D, and 6054AR were M5 size transducers. The 6125C was a larger, 6.2mm transducer. Note that both of the AVL pressure transducers utilized a PH03 flame arrestor. Sweeps of ignition timing (spark sweep), engine speed, and engine load were performed to study the effects of thermal shock on each pressure transducer. The project consisted of two distinct phases which included experimental engine testing as well as simulation using a commercially available software package. A comparison was performed to characterize the quality of the data between the actual cylinder pressure and the simulated results. This comparison was valuable because the simulation results did not include thermal shock effects. All three sets of tests showed the peak cylinder pressure was basically unaffected by thermal shock. Comparison of the experimental data with the simulated results showed very good correlation. The spark sweep was performed at 1300 RPM and 3.3 bar NMEP and showed that the differences between the simulated results (no thermal shock) and the experimental data for the indicated mean effective pressure (IMEP) and the pumping mean effective pressure (PMEP) were significantly less than the published accuracies. All transducers had an IMEP percent difference less than 0.038% and less than 0.32% for PMEP. Kistler and AVL publish that the accuracy of their pressure transducers are within plus or minus 1% for the IMEP (AVL 2011; Kistler 2011). In addition, the difference in average exhaust absolute pressure between the simulated results and experimental data was the greatest for the two Kistler pressure transducers. The location and lack of flame arrestor are believed to be the cause of the increased error. For the engine speed sweep, the torque output was held constant at 203 Nm (150 ft-lbf) from 1500 to 4000 RPM. The difference in IMEP was less than 0.01% and the PMEP was less than 1%, except for the AVL GH14D which was 5% and the AVL GH15DK which was 2.25%. A noticeable error in PMEP appeared as the load increased during the engine speed sweeps, as expected. The load sweep was conducted at 2000 RPM over a range of NMEP from 1.1 to 14 bar. The difference in IMEP values were less 0.08% while the PMEP values were below 1% except for the AVL GH14D which was 1.8% and the AVL GH15DK which was at 1.25%. In-cylinder pressure transducer data quality was effectively analyzed using a combination of experimental data and simulation results. Several criteria can be used to investigate the impact of thermal shock on data quality as well as determine the best location and thermal protection for various transducers.
Resumo:
The combustion strategy in a diesel engine has an impact on the emissions, fuel consumption and the exhaust temperatures. The PM mass retained in the CPF is a function of NO2 and PM concentrations in addition to the exhaust temperatures and the flow rates. Thus the engine combustion strategy affects exhaust characteristics which has an impact on the CPF operation and PM mass retained and oxidized. In this report, a process has been developed to simulate the relationship between engine calibration, performance and HC and PM oxidation in the DOC and CPF respectively. Fuel Rail Pressure (FRP) and Start of Injection (SOI) sweeps were carried out at five steady state engine operating conditions. This data, along with data from a previously carried out surrogate HD-FTP cycle [1], was used to create a transfer function model which estimates the engine out emissions, flow rates, temperatures for varied FRP and SOI over a transient cycle. Four different calibrations (test cases) were considered in this study, which were simulated through the transfer function model and the DOC model [1, 2]. The DOC outputs were then input into a model which simulates the NO2 assisted and thermal PM oxidation inside a CPF. Finally, results were analyzed as to how engine calibration impacts the engine fuel consumption, HC oxidation in the DOC and the PM oxidation in the CPF. Also, active regeneration for various test cases was simulated and a comparative analysis of the fuel penalties involved was carried out.
Resumo:
A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.
Resumo:
The push for improved fuel economy and reduced emissions has led to great achievements in engine performance and control. These achievements have increased the efficiency and power density of gasoline engines dramatically in the last two decades. With the added power density, thermal management of the engine has become increasingly important. Therefore it is critical to have accurate temperature and heat transfer models as well as data to validate them. With the recent adoption of the 2025 Corporate Average Fuel Economy(CAFE) standard, there has been a push to improve the thermal efficiency of internal combustion engines even further. Lean and dilute combustion regimes along with waste heat recovery systems are being explored as options for improving efficiency. In order to understand how these technologies will impact engine performance and each other, this research sought to analyze the engine from both a 1st law energy balance perspective, as well as from a 2nd law exergy analysis. This research also provided insights into the effects of various parameters on in-cylinder temperatures and heat transfer as well as provides data for validation of other models. It was found that the engine load was the dominant factor for the energy distribution, with higher loads resulting in lower coolant heat transfer and higher brake work and exhaust energy. From an exergy perspective, the exhaust system provided the best waste heat recovery potential due to its significantly higher temperatures compared to the cooling circuit. EGR and lean combustion both resulted in lower combustion chamber and exhaust temperatures; however, in most cases the increased flow rates resulted in a net increase in the energy in the exhaust. The exhaust exergy, on the other hand, was either increased or decreased depending on the location in the exhaust system and the other operating conditions. The effects of dilution from lean operation and EGR were compared using a dilution ratio, and the results showed that lean operation resulted in a larger increase in efficiency than the same amount of dilution with EGR. Finally, a method for identifying fuel spray impingement from piston surface temperature measurements was found. Note: The material contained in this section is planned for submission as part of a journal article and/or conference paper in the future.
Resumo:
Hypothesis: Early recognition of coagulopathy may improve the care of patients with multiple injuries. Rapid thrombelastography (RapidTEG) is a new variant of thrombelastography (TEG), in which coagulation is initiated by the addition of protein tissue factor. The kinetics of coagulation and the times of measurement were compared for two variants of TEG--RapidTEG and conventional TEG, in which coagulation was initiated with kaolin. The measurements were performed on blood samples from 20 patients with multiple injuries. The RapidTEG results were also compared with conventional measurements of blood coagulation. The mean time for the RapidTEG test was 19.2 +/- 3.1 minutes (mean +/- SD), in comparison with 29.9 +/- 4.3 minutes for kaolin TEG and 34.1 +/- 14.5 minutes for conventional coagulation tests. The mean time for the RapidTEG test was 30.8 +/- 5.72 minutes, in comparison with 41.5 +/- 5.66 minutes for kaolin TEG and 64.9 +/- 18.8 for conventional coagulation tests---measured from admission of the patients to the resuscitation bay until the results were available. There were significant correlations between the RapidTEG results and those from kaolin TEG and conventional coagulation tests. RapidTEG is the most rapid available test for providing reliable information on coagulopathy in patients with multiple injuries. This has implications for improving patient care.
Resumo:
BACKGROUND: When anticoagulation is contraindicated or ineffective, optional vena cava filters can be used to prevent pulmonary embolism. These devices can be removed within a defined period of time or can remain in the vena cava permanently. METHODS: The status of optional vena cava filters was studied by a review of the relevant literature found in a selective Medline search from 2000 to 2008, including a Cochrane review and published guidelines. RESULTS: Optional vena cava filter can be removed up to 20 weeks or even longer after insertion (depending on the filter model) in a small interventional radiological procedure if therapeutic anticoagulation has been achieved or the patient is no longer at risk for venous thromboembolism. Current studies show comparable results for optional filters and permanent filters, but there have not yet been any prospective studies comparing the two filter types. CONCLUSIONS: Optional vena cava filters are an important addition to the management of venous thromboembolic disease. As only limited data are available to date, the use of optional filters should be considered on an individual case basis.
Resumo:
OBJECTIVE: In search of an optimal compression therapy for venous leg ulcers, a systematic review and meta-analysis was performed of randomized controlled trials (RCT) comparing compression systems based on stockings (MCS) with divers bandages. METHODS: RCT were retrieved from six sources and reviewed independently. The primary endpoint, completion of healing within a defined time frame, and the secondary endpoints, time to healing, and pain were entered into a meta-analysis using the tools of the Cochrane Collaboration. Additional subjective endpoints were summarized. RESULTS: Eight RCT (published 1985-2008) fulfilled the predefined criteria. Data presentation was adequate and showed moderate heterogeneity. The studies included 692 patients (21-178/study, mean age 61 years, 56% women). Analyzed were 688 ulcerated legs, present for 1 week to 9 years, sizing 1 to 210 cm(2). The observation period ranged from 12 to 78 weeks. Patient and ulcer characteristics were evenly distributed in three studies, favored the stocking groups in four, and the bandage group in one. Data on the pressure exerted by stockings and bandages were reported in seven and two studies, amounting to 31-56 and 27-49 mm Hg, respectively. The proportion of ulcers healed was greater with stockings than with bandages (62.7% vs 46.6%; P < .00001). The average time to healing (seven studies, 535 patients) was 3 weeks shorter with stockings (P = .0002). In no study performed bandages better than MCS. Pain was assessed in three studies (219 patients) revealing an important advantage of stockings (P < .0001). Other subjective parameters and issues of nursing revealed an advantage of MCS as well. CONCLUSIONS: Leg compression with stockings is clearly better than compression with bandages, has a positive impact on pain, and is easier to use.
Quality evaluation of the available Internet information regarding pain during orthodontic treatment
Resumo:
OBJECTIVE To investigate the quality of the data disseminated via the Internet regarding pain experienced by orthodontic patients. MATERIALS AND METHODS A systematic online search was performed for 'orthodontic pain' and 'braces pain' separately using five search engines. The first 25 results from each search term-engine combination were pooled for analysis. After excluding advertising sites, discussion groups, video feeds, and links to scientific articles, 25 Web pages were evaluated in terms of accuracy, readability, accessibility, usability, and reliability using recommended research methodology; reference textbook material, the Flesch Reading Ease Score; and the LIDA instrument. Author and information details were also recorded. RESULTS Overall, the results indicated a variable quality of the available informational material. Although the readability of the Web sites was generally acceptable, the individual LIDA categories were rated of medium or low quality, with average scores ranging from 16.9% to 86.2%. The orthodontic relevance of the Web sites was not accompanied by the highest assessment results, and vice versa. CONCLUSIONS The quality of the orthodontic pain information cited by Web sources appears to be highly variable. Further structural development of health information technology along with public referral to reliable sources by specialists are recommended.
Resumo:
BACKGROUND -Cardiac tamponade is the most dramatic complication observed during atrial fibrillation (AF) ablation and the leading cause of procedure-related mortality. Female gender is a known risk factor for complications during AF ablation; however, it is unknown whether women have a higher risk of tamponade. METHODS AND RESULTS -A systematic Medline search was used to locate academic electrophysiologic (EP) centers that reported cases of tamponade occurring during AF ablation. Centers were asked to provide information on cases of acute tamponade according to gender and their mode of management including any case of related mortality. Nineteen EP centers provided information on 34,943 ablation procedures involving 25,261 (72%) males. Overall 289 (0.9%) cases of tamponade were reported: 120 (1.24%) in females and 169 (0.67%) in males (odds ratio 1.83, P<0.001). There was a reciprocal association between center volume and the occurrence of tamponade with substantial lower risk in high volume centers. Most cases of tamponade occurred during catheter manipulation or ablation; females tended to develop more tamponades during transseptal catheterization. No gender difference in the mode of management was observed. However, 16% cases of tamponade required surgery with lower rates in high volume centers. Three cases of tamponade (1%) culminated in death. CONCLUSIONS -Tamponade during AF ablation procedures is relatively rare. Women have an almost twofold higher risk for developing this complication. The risk of tamponade among women decreases substantially in high volume centers. Surgical back-up and acute management skills for treating tamponade are important in centers performing AF ablation.