855 resultados para Scenario Programming, Markup Language, End User Programming


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a novel framework for dense pixel matching based on dynamic programming is introduced. Unlike most techniques proposed in the literature, our approach assumes neither known camera geometry nor the availability of rectified images. Under such conditions, the matching task cannot be reduced to finding correspondences between a pair of scanlines. We propose to extend existing dynamic programming methodologies to a larger dimensional space by using a 3D scoring matrix so that correspondences between a line and a whole image can be calculated. After assessing our framework on a standard evaluation dataset of rectified stereo images, experiments are conducted on unrectified and non-linearly distorted images. Results validate our new approach and reveal the versatility of our algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new laboratory-based module for embedded systems teaching, which addresses the current lack of consideration for the link between hardware development, software implementation, course content and student evaluation in a laboratory environment. The course introduces second year undergraduate students to the interface between hardware and software and the programming of embedded devices; in this case, the PIC (originally peripheral interface controller, later rebranded programmable intelligent computer) microcontroller. A hardware development board designed for use in the laboratories of this module is presented. Through hands on laboratory experience, students are encouraged to engage with practical problem-solving exercises and develop programming skills across a broad range of scenarios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An approach to the management of non-functional concerns in massively parallel and/or distributed architectures that marries parallel programming patterns with autonomic computing is presented. The necessity and suitability of the adoption of autonomic techniques are evidenced. Issues arising in the implementation of autonomic managers taking care of multiple concerns and of coordination among hierarchies of such autonomic managers are discussed. Experimental results are presented that demonstrate the feasibility of the approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent trends towards increasingly parallel computers mean that there needs to be a seismic shift in programming practice. The time is rapidly approaching when most programming will be for parallel systems. However, most programming techniques in use today are geared towards sequential, or occasionally small-scale parallel, programming. While refactoring has so far mainly been applied to sequential programs, it is our contention that refactoring can play a key role in significantly improving the programmability of parallel systems, by allowing the programmer to apply a set of well-defined transformations in order to parallelise their programs. In this paper, we describe a new language-independent refactoring approach that helps introduce and tune parallelism through high-level design patterns targeting a set of well-specified parallel skeletons. We believe this new refactoring process is the key to allowing programmers to truly start thinking in parallel. © 2012 ACM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data flow techniques have been around since the early '70s when they were used in compilers for sequential languages. Shortly after their introduction they were also consideredas a possible model for parallel computing, although the impact here was limited. Recently, however, data flow has been identified as a candidate for efficient implementation of various programming models on multi-core architectures. In most cases, however, the burden of determining data flow "macro" instructions is left to the programmer, while the compiler/run time system manages only the efficient scheduling of these instructions. We discuss a structured parallel programming approach supporting automatic compilation of programs to macro data flow and we show experimental results demonstrating the feasibility of the approach and the efficiency of the resulting "object" code on different classes of state-of-the-art multi-core architectures. The experimental results use different base mechanisms to implement the macro data flow run time support, from plain pthreads with condition variables to more modern and effective lock- and fence-free parallel frameworks. Experimental results comparing efficiency of the proposed approach with those achieved using other, more classical, parallel frameworks are also presented. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent trends in computing systems, such as multi-core processors and cloud computing, expose tens to thousands of processors to the software. Software developers must respond by introducing parallelism in their software. To obtain highest performance, it is not only necessary to identify parallelism, but also to reason about synchronization between threads and the communication of data from one thread to another. This entry gives an overview on some of the most common abstractions that are used in parallel programming, namely explicit vs. implicit expression of parallelism and shared and distributed memory. Several parallel programming models are reviewed and categorized by means of these abstractions. The pros and cons of parallel programming models from the perspective of performance and programmability are discussed.