967 resultados para Scalar fields
Resumo:
The present work "Nature and Ecological Significance of Nutrient Regeneration in different Prawn Culture Fields" was undertaken to understand the seasonal variation of nutrients, nutrient cycling and primary productivity of the prawn culture systems. The main emphasis was to find the qualitative and quantitative estimates of distribution of total phosphorus, inorganic phosphorus, organic phosphorus, total nitrogen and nitrogen fractions in the water. The effect of nutrient cycling on primary productivity and concentration of metals also form one part of the study. The entire thesis comprise of only one major chapter with subchapters such as, Introduction (I), Review of Literature (2), Material and Methods (3), Results (14), Discussion (5), Executive Summary (6) and Biblio~ graphy (7)
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the development and deployment of wireless sensor network for crop monitoring in the paddy fields of Kuttanad, a region of Kerala, the southern state of India.
Resumo:
A yearlong (September 2009–August 2010) study was undertaken to find out possible reasons for occasional occurrence of White Spot Syndrome Virus (WSSV) outbreak in the traditional prawn farms adjoining Cochin backwaters. Physicochemical and bacteriological parameters of water and sediment from feeder canal and four shrimp farms were monitored on a fortnightly basis. The physicochemical parameters showed variation during the two production cycles and between the farms studied. Dissolved oxygen (DO) content of water fromfeeder canal showed low oxygen levels (as low as 0.8mg/L) throughout the study period. There was no disease outbreak in the perennial ponds. Poor water exchange coupled with nutrient loading from adjacent houses resulted in phytoplankton bloom in shallow seasonal ponds which led to hypoxic conditions in early morning and supersaturation of DO in the afternoon besides considerably high alkaline pH. Ammonia levels were found to be very high in these ponds.WSSV outbreak was encountered twice during the study leading to mass mortalities in the seasonal ponds. The hypoxia and high ammonia content in water and abrupt fluctuations in temperature, salinity and pH might lead to considerable stress in the shrimps triggeringWSSV infection in these traditional ponds
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Resumo:
The present work is the study of filamentous algae in the paddy fields of Kuttanad and Kole lands of Kerala. This investigation was initiated by sampling of filamentous algae in Kuttanad during December 2010 to February 2011. A second phase of sampling was done from November 2011 to February 2012. The sampling periodicity corresponded to the crop growth starting from field preparation through sowing, and continued till the harvest. Sampling locations were selected from the active paddy cultivation regions of the six agronomic zones of Kuttanad. The numbers of sampling locations were proportional to the area of each zone. Algae of the Kole lands were collected during from October 2011 to January 2012. It was observed that blue-green algae dominated in both Kuttanad and Kole lands. Thirty two species of blue-green algae and eight species of green algae were identified from Kuttanad. The highest number of algal species was observed from Kayal lands in Kuttanad throughout the cropping season. Among the thirty two species of blue-green algae twenty five species are nonheterocystous and seven species are heterocystous. Twenty eight species of blue-green and six species of green algae were identified from Kole lands, and highest number of species was observed in Palakkal throughout the cropping season. Among the twenty eight species of blue-green algae collected from Kole lands twenty one species are non-heterocystous, and only seven species are heterocystous filamentous algae. Blooms of Spirogyra were observed during the second phase of sampling in Kuttanad and also in the Kole lands. The results of the germination study revealed that the extract of Spirogyra sp. inhibited seed germination and reduced seedling vigour. The growth of the treated seedlings was evaluated by pot experiments. The results clearly showed that Spirogyra sp. can negatively affect the seed germination, seedling vigour, and the yield of rice.
Resumo:
We study the asymptotics conjecture of Malle for dihedral groups Dl of order 2l, where l is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen-Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.
Resumo:
We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.
Resumo:
Research on soil fertility management in sub-Saharan Africa was criticized lately for largely ignoring farmers’ management strategies and the underlying principles. To fill this gap of knowledge, detailed interviews were conducted with 108 farm households about their rationale in managing the soil fertility of 307 individual fields in the agro-pastoral village territory of Chikal in western Niger. To amplify the farmers’ information on manuring and corralling practices, repeated measurements of applied amounts of manure were carried out within six 1-km^2 monitoring areas from February to October 1998. The interviews revealed that only 2% of the fields were completely fallowed for a period of 1–15 years, but 40% of the fields were at least partially fallowed. Mulching of crop residues was mainly practiced to fight wind erosion but was restricted to 36% of the surveyed fields given the alternative use of straw as livestock feed. Manure application and livestock corralling, as most effective tools to enhance soil fertility, were targeted to less than 30% of the surveyed fields. The application of complete fallow and manuring and corralling practices were strongly related to the households’ endowment with resources, especially with land and livestock. Within particular fields, measures were mainly applied to spots of poor soil fertility, while the restoration of the productivity of hard pans was of secondary importance. Given the limited spatial coverage of indigenous soil fertility measures and their strong dependence on farmers’ wealth, supplementary strategies to restrict the decline of soil fertility in the drought prone areas of Niger with their heavily weathered soils are needed.
Resumo:
Die Arbeit behandelt die numerische Untersuchung von Wasserstoff-Moleküldynamik in starken Laserfeldern. Im Speziellen wird die Struktur von Ionisationsspektren bei Einfach-Photoionisation betrachtet. Korrelationen zwischen Elektron- und Kernbewegung werden identifiziert und mit Effekten in den Energiespektren in Verbindung gebracht. Dabei wird stets auf die Integration der zeitabhängigen Schrödingergleichung zurückgegriffen.
Resumo:
The present Thesis looks at the problem of protein folding using Monte Carlo and Langevin simulations, three topics in protein folding have been studied: 1) the effect of confining potential barriers, 2) the effect of a static external field and 3) the design of amino acid sequences which fold in a short time and which have a stable native state (global minimum). Regarding the first topic, we studied the confinement of a small protein of 16 amino acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The confinement of proteins occurs frequently in the cell environment. Some molecules called Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and avoid the formation of aggregates and misfolded proteins. This mechanism of confinement mediated by Chaperones is not yet well understood. In the present work we considered two kinds of potential barriers which try to mimic the confinement induced by a Chaperon molecule. The first kind of potential was a purely repulsive barrier whose only effect is to create a cavity where the protein folds up correctly. The second kind of potential was a barrier which includes both attractive and repulsive effects. We performed Wang-Landau simulations to calculate the thermodynamical properties of 1NJ0. From the free energy landscape plot we found that 1NJ0 has two intermediate states in the bulk (without confinement) which are clearly separated from the native and the unfolded states. For the case of the purely repulsive barrier we found that the intermediate states get closer to each other in the free energy landscape plot and eventually they collapse into a single intermediate state. The unfolded state is more compact, compared to that in the bulk, as the size of the barrier decreases. For an attractive barrier modifications of the states (native, unfolded and intermediates) are observed depending on the degree of attraction between the protein and the walls of the barrier. The strength of the attraction is measured by the parameter $\epsilon$. A purely repulsive barrier is obtained for $\epsilon=0$ and a purely attractive barrier for $\epsilon=1$. The states are changed slightly for magnitudes of the attraction up to $\epsilon=0.4$. The disappearance of the intermediate states of 1NJ0 is already observed for $\epsilon =0.6$. A very high attractive barrier ($\epsilon \sim 1.0$) produces a completely denatured state. In the second topic of this Thesis we dealt with the interaction of a protein with an external electric field. We demonstrated by means of computer simulations, specifically by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states can be modified by means of a field. We have found that an external field can induce several modifications in the thermodynamics of these states: for relatively low magnitudes of the field ($<2.06 \times 10^8$ V/m) no major changes in the states are observed. However, for higher magnitudes than ($6.19 \times 10^8$ V/m) one observes the appearance of a new native state which exhibits a helix-like structure. In contrast, the original native state is a $\beta$-sheet structure. In the new native state all the dipoles in the backbone structure are aligned parallel to the field. The design of amino acid sequences constitutes the third topic of the present work. We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Garcia ({\it work unpublished}). We applied it to the study of off-lattice models. The Rate of Convergence criterion is used to decide if a certain sequence will fold up correctly within a relatively short time. Before the present work, the common way to decide if a certain sequence was a good/bad folder was by performing the whole dynamics until the sequence got its native state (if it existed), or by studying the curvature of the potential energy surface. There are some difficulties in the last two approaches. In the first approach, performing the complete dynamics for hundreds of sequences is a rather challenging task because of the CPU time needed. In the second approach, calculating the curvature of the potential energy surface is possible only for very smooth surfaces. The Rate of Convergence criterion seems to avoid the previous difficulties. With this criterion one does not need to perform the complete dynamics to find the good and bad sequences. Also, the criterion does not depend on the kind of force field used and therefore it can be used even for very rugged energy surfaces.
Resumo:
Little is known about gaseous carbon (C) and nitrogen (N) emissions from traditional terrace agriculture in irrigated high mountain agroecosystems of the subtropics. In an effort towards filling this knowledge gap measurements of carbon dioxide (CO_2), methane (CH_4), ammonia (NH_3) and dinitrous oxide (N_2O) were taken with a mobile photoacoustic infrared multi-gas monitor on manure-filled PE-fibre storage bags and on flood-irrigated untilled and tilled fields in three mountain oases of the northen Omani Al Jabal al Akhdar mountains. During typical 9-11 day irrigation cycles of March, August and September 2006 soil volumetric moisture contents of fields dominated by fodder wheat, barley, oats and pomegranate ranged from 46-23%. While manure incorporation after application effectively reduced gaseous N losses, prolonged storage of manure in heaps or in PE-fibre bags caused large losses of C and N. Given the large irrigation-related turnover of organic C, sustainable agricultural productivity of oasis agriculture in Oman seems to require the integration of livestock which allows for several applications of manure per year at individual rates of 20 t dry matter ha^−1.
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
Resumo:
The computation of a piecewise smooth function that approximates a finite set of data points may be decomposed into two decoupled tasks: first, the computation of the locally smooth models, and hence, the segmentation of the data into classes that consist on the sets of points best approximated by each model, and second, the computation of the normalized discriminant functions for each induced class. The approximating function may then be computed as the optimal estimator with respect to this measure field. We give an efficient procedure for effecting both computations, and for the determination of the optimal number of components.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The descriptors that we evaluated are Gaussian derivatives up to the third order, gray image patches, and Laplacian-based descriptors with either three scales or one scale filters. We compare selectivity and invariance to several affine changes such as rotation, scale, brightness, and viewpoint. Comparisons have been made keeping the dimensionality of the descriptors roughly constant. The overall results indicate a good performance by the descriptor based on a set of oriented Gaussian filters. It is interesting that oriented receptive fields similar to the Gaussian derivatives as well as receptive fields similar to the Laplacian are found in primate visual cortex.