944 resultados para Salmonella Enteritidis
Resumo:
Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.
Resumo:
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Resumo:
The Burkholderia cepacia complex (Bcc) is a group of opportunistic bacteria chronically infecting the airways of patients with cystic fibrosis (CF). Several laboratories have shown that Bcc members, in particular B. cenocepacia, survive within a membrane-bound vacuole inside phagocytic and epithelial cells. We have previously demonstrated that intracellular B. cenocepacia causes a delay in phagosomal maturation, as revealed by impaired acidification and slow accumulation of the late phagolysosomal marker LAMP-1. In this study, we demonstrate that uninfected cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages or normal macrophages treated with a CFTR-specific drug inhibitor display normal acidification. However, after ingestion of B. cenocepacia, acidification and phagolysosomal fusion of the bacteria-containing vacuoles occur in a lower percentage of CFTR-negative macrophages than CFTR-positive cells, suggesting that loss of CFTR function contributes to enhance bacterial intracellular survival. The CFTR-associated phagosomal maturation defect was absent in macrophages exposed to heat-inactivated B. cenocepacia and macrophages infected with a non-CF pathogen such as Salmonella enterica, an intracellular pathogen that once internalized rapidly traffics to acidic compartments that acquire lysosomal markers. These results suggest that not only a defective CFTR but also viable B. cenocepacia are required for the altered trafficking phenotype. We conclude that CFTR may play a role in the mechanism of clearance of the intracellular infection, as we have shown before that B. cenocepacia cells localized to the lysosome lose cell envelope integrity. Therefore, the prolonged maturation arrest of the vacuoles containing B. cenocepacia within cftr(-/-) macrophages could be a contributing factor in the persistence of the bacteria within CF patients.
Resumo:
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Resumo:
The PglB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PglB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PglB required an acetamido group at the C-2. A model for the mechanism of PglB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PglB represents the foundation for engineering glycoproteins that will have an impact on biotechnology.
Resumo:
We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.
Resumo:
One of the most common pathways for the export of O-specific lipopolysaccharide (LPS) across the plasma membrane requires the participation of the Wzx protein. Wzx belongs to a family of integral membrane proteins that share little conservation in their primary amino acid sequence, making it difficult to delineate functional domains. This paper reports the cloning and expression in Escherichia coli K-12 of various Wzx homologues from different bacteria as FLAG epitope-tagged protein fusions. A reconstitution system for O16 LPS synthesis was used to assess the ability of each Wzx protein to complement an E. coli K-12 Deltawzx mutant. The results demonstrate that Wzx proteins from O-antigen systems that use N-acetylglucosamine or N-acetylgalactosamine for the initiation of the biosynthesis of the O repeat can fully complement the formation of O16 LPS. Partial complementation was seen with Wzx from Pseudomonas aeruginosa, a system that uses N-acetylfucosamine in the initiation reaction. In contrast, there was negligible complementation with the Wzx protein from Salmonella enterica, a system in which galactose is the initiating sugar. These results support a model whereby the first sugar of the O repeat can be recognized by the O-antigen translocation machinery.
Resumo:
The intermediate steps in the biosynthesis of the ADP-L-glycero-D-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of D-glycero-D-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-D-glycero-D-manno-heptose.
Resumo:
During O antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenylpyrophosphate (Und-P-P)-bound O antigen subunits occurs before their polymerization and ligation to the rest of the LPS molecule. Despite the general nature of the translocation process, putative O-antigen translocases display a low level of amino acid sequence similarity. In this work, we investigated whether complete O antigen subunits are required for translocation. We demonstrate that a single sugar, GlcNAc, can be incorporated to LPS of Escherichia coli K-12. This incorporation required the functions of two O antigen synthesis genes, wecA (UDP-GlcNAc:Und-P GlcNAc-1-P transferase) and wzx (O-antigen translocase). Complementation experiments with putative O-antigen translocases from E. coli O7 and Salmonella enterica indicated that translocation of O antigen subunits is independent of the chemical structure of the saccharide moiety. Furthermore, complementation with putative translocases involved in synthesis of exopolysaccharides demonstrated that these proteins could not participate in O antigen assembly. Our data indicate that recognition of a complete Und-P-P-bound O antigen subunit is not required for translocation and suggest a model for O antigen synthesis involving recognition of Und-P-P-linked sugars by a putative complex made of Wzx translocase and other proteins involved in the processing of O antigen.
Resumo:
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.
Resumo:
The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.
Resumo:
Lipopolysaccharide (LPS), a glycolipid molecule found on the outer leaflet of outer membranes of gram-negative bacteria, consists of three moieties: lipid A, core oligosaccharide, and the O-specific polysaccharide chain. The O-specific side chain, which extends to the extracellular milieu, plays an important role in pathogenicity, especially during the initial stages of infection, because of its ability to interact with serum complement. In recent years, several laboratories have used recombinant DNA tools to determine, at the molecular level, the organization, expression, and regulation of genes involved in LPS biosynthesis in Salmonella and Escherichia coli. An increased understanding of the molecular aspects of the O-specific side-chain genes will shed light on the intimate details related with the formation of the O-specific side chain, its assembly onto the lipid A--core, and the translocation and insertion of the complete LPS molecule into the outer membrane. It will also contribute to the understanding of the evolution of these genes and the correlation of chemical diversity of O-specific side chains with the genetic diversity of O-specific side-chain genes. In addition, since the O-specific side chains are involved in the pathogenicity of medically important gram-negative bacteria, a basic understanding of the regulation and expression of O-specific side chain LPS genes will contribute to the field of molecular pathogenesis. This article provides an overview of the role of O-specific side chains in septicemic infections and also discusses the current status of molecular genetic studies on O-specific side-chain genes from E. coli.
Resumo:
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Resumo:
The Yersinia pseudotuberculosis chromosome contains a seven-gene polycistronic unit (the pmrF operon) whose products share extensive homologies with their pmrF counterparts in Salmonella enterica serovar Typhimurium (S. typhimurium), another Gram-negative bacterial enteropathogen. This gene cluster is essential for addition of 4-aminoarabinose to the lipid moiety of LPS, as demonstrated by MALDI-TOF mass spectrometry of lipid A from both wild-type and pmrF-mutated strains. As in S. typhimurium, 4-aminoarabinose substitution of lipid A contributes to in vitro resistance of Y. pseudotuberculosis to the antimicrobial peptide polymyxin B. Whereas pmrF expression in S. typhimurium is mediated by both the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems, it appears to be PmrA-PmrB-independent in Y. pseudotuberculosis, with the response regulator PhoP interacting directly with the pmrF operon promoter region. This result reveals that the ubiquitous PmrA-PmrB regulatory system controls different regulons in distinct bacterial species. In addition, pmrF inactivation in Y. pseudotuberculosis has no effect on bacterial virulence in the mouse, again in contrast to the situation in S. typhimurium. The marked differences in pmrF operon regulation in these two phylogenetically close bacterial species may be related to their dissimilar lifestyles.
Resumo:
The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.