994 resultados para Saab 900 GL.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogenated silicon (Si:H) films near the threshold of crystallinity were prepared by very high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) using a wide range of hydrogen dilution R-H = [H-2]/[SiH4] values of 2-100. The effects of H dilution R-H on the structural properties of the films were investigated using micro-Raman scattering and Fourier transform infrared (FTIR) absorption spectroscopy. The obtained Raman spectra show that the H dilution leads to improvements in the short-range order and the medium-range order of the amorphous network and then to the morphological transition from amorphous to crystalline states. The onset of this transition locates between R-H = 30 and 40 in our case, and with further increasing R-H from 40 to 100, the nanocrystalline volume fraction increases from similar to23% to 43%, and correspondingly the crystallite size enlarges from similar to2.8 to 4.4 nm. The FTIR spectra exhibit that with R-H increasing, the relative intensities of both the SiH stretching mode component at 2100 cm(-1) and wagging mode component at 620 cm(-1) increase in the same manner. We assert that these variations in IR spectra should be associated with the formation of paracrystalline structures in the low H dilution films and nanocrystalline structures in the high H dilution films. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-quality nc-Si/a-Si:H diphasic films with improved stability were prepared by using the plasma-enhanced chemical vapor deposition technology. In comparison with typical amorphous silicon, the diphasic silicon films possess higher photoconductivity (two orders larger than that of the amorphous silicon film) and fairly good photosensitivity(the ratio of the photo-to dark-conductivity is about 10) and higher stability (the degradation of the photoconductivity is less than 10% after 24h long light soaking with 50 mW/cm(2) intensity at room temperature). In addition, the diphasic silicon film has a better light spectra response in the longer wavelength range. The improvement in photoelectronic properties may be attributed to: the existence of the disorder within the amorphous matrix, which breaks the momentum selection rule in the optical transition and, consequently, results in the large light absorption coefficient and high photosensitivity; the improved medium range order and low gap states density. Excess carriers generated in the amorphous matrix tend to recombine in the embedded crystallites, which suppresses nonradiative recombination within the amorphous matrix and reduces the subsequent defect creation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMPS simulator, which was developed by Pennsylvania State University, has been used to simulate photovoltaic performances of nc-Si:H/c-Si solar cells. It is shown that interface states are essential factors prominently influencing open circuit voltages (V-OC) and fill factors (FF) of these structured solar cells. Short circuit current density (J(SC)) or spectral response seems more sensitive to the thickness of intrinsic a-Si:H buffer layers inserted into n(+)-nc-Si:H layer and p-c-Si substrates. Impacts of bandgap offset on solar cell performances have also been analyzed. As DeltaE(C) increases, degradation of VOC and FF owing to interface states are dramatically recovered. This implies that the interface state cannot merely be regarded as carrier recombination centres, and impacts of interfacial layer on devices need further investigation. Theoretical maximum efficiency of up to 31.17% (AM1.5,100mW/cm(2), 0.40-1.1mum) has been obtained with BSF structure, idealized light-trapping effect(R-F=0, R-B=1) and no interface states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline Si nanowires (poly SiNWS) were successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source and Au as the catalyst. The diameters of Si nanowires range from 15 to 100nm. The growth process indicates that to fabricate SiNWS by PECVD, pre-annealing at high temperature is necessary. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of a-SiOx:H (0.52 < x < 1.58) films are fabricated by plasma-enhanced-chemical-vapor-deposition (PECVD) method at the substrate temperature of 250degreesC. The microstructure and local bonding configurations of the films are investigated in detail using micro-Raman scattering, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). It is found that the films are structural inhomogeneous, with five phases of Si, Si2O:H, SiO:H, Si2O3:H and SiO2 that coexist. The phase of Si is composed of nonhydrogenated amorphous silicon (a-Si) clusters that are spatially isolated. The average size of the clusters decreases with the increasing oxygen concentration x in the films. The results indicate that the structure of the present films can be described by a multi-shell model, which suggests that a-Si cluster is surrounded in turn by the subshells Of Si2O:H, SiO:H, Si2O3:H, and SiO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Good quality hydrogenated protocrystalline silicon films were successfully prepared by radio frequency plasma enhanced chemical vapor deposition (PECVD) with various hydrogen dilution ratios (R = ([H-2]/[SiH4]) from 10 to 100). The photosensitivity of the films is up to 10(6) under the light intensity of 50mW.cm(-2). The microstructure of the films was studied by micro-region Raman scattering spectra at room temperature. The deconvolution of the Raman spectra by Gaussion functions shows that the films deposited under low hydrogen dilution ratios (R < 33) exhibit typical amorphous properties, while the films deposited under high hydrogen dilution ratios (R > 50) possess a diphasic structure, with increasing crystalline volume fraction with R. The size of the crystallites in the diphasic films is about 2.4 mm, which was deduced from the phonon confinement model. The intermediate range order of the silicon film increases with increasing hydrogen dilution ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A kind of hydrogenated diphasic, silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic and microstructural properties of the films have been investigated by the constant photocurrent method (CPM), Raman scattering and nuclear magnetic resonance (NMR). Our experimental results and corresponding analyses showed that the diphasic films, incorporated with a subtle boron compensation, could gain both the fine photosensitivity and high stability, provided the crystalline fraction (f) was controlled in the range of 0 < f < 0.3. When compared with the conventional hydrogenated amorphous silicon (a-Si:H), the diphasic films are more ordered and robust in the microstructure, and have a less clustered phase in the Si-H bond configurations. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient photoconductivity and its light-induced change were investigated by using a Model 4400 boxcar averager and signal processor for lightly boron-doped a-Si : H films. The transient photoconductivities of the sample were measured at an annealed state and light-soaked states. The transient decay process of the photoconductivity can be fitted fairly well by a second-order exponential decay function, which indicates that the decay process is related with two different traps. It is noteworthy that the photoconductivity of the film increases after light-soaking. This may be due to the deactivity of the boron acceptor B-4(-), and thus some of the boron atoms can no longer act as acceptors and drives E-F to shifts upward. Consequently, the number of effective recombination centers may be reduced and so the photoconductivity increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy were studied. Photoluminescence measurements on a series of samples with different well widths and N compositions were used to evaluate the effects. The intermixing of GaNAs and GaAs layers was clearly enhanced by the presence of a SiO2-cap layer. However, it was strongly dependent on the N composition. After annealing at 900 degreesC for 30 s, a blueshift up to 62 meV was observed for the SiO2-capped region of the sample with N composition of 1.5%, whereas only a small blueshift of 26 meV was exhibited for the bare region. For the sample with the N composition of 3.1%, nearly identical photoluminescence peak energy shift for both the SiO2-capped region and the bare region was observed. It is suggested that the enhanced intermixing is mainly dominated by SiO2-capped layer induced defects-assisted diffusion for the sample with smaller N composition, while with increasing N composition, the diffusion assisted by interior defects become predominant. (C) 2001 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of hydrogen dilution, subtle boron compensation, and light-soaking on the gap states of hydrogenated amorphous silicon films (a-Si:H) near and above the threshold of microcrystallinity have been investigated in detail by the constant photocurrent method and the improved phase-shift analysis of modulated photocurrent technique. It is shown that high hydrogen dilution near the threshold of microcrystallinity leads to a more ordered network structure and to the redistribution of gap states; it gives rise to a small peak at about 0.55 eV and a shoulder at about 1.2 eV below the conduction band edge, which are associated with the formation of microcrystallites embedded in the amorphous silicon host matrix. A concurrent subtle boron compensation is demonstrated to prevent excessive formation of microcrystallinity, and to help promote the growth of the ordered regions and reduce the density of gap defect states, particularly those associated with microcrystallites. Hydrogen-diluted and appropriately boron-compensated a-Si:H films deposited near the threshold of microcrystallinity show the lowest density of the defects in both the annealed and light-soaked states, and hence, the highest performance and stability. (C) 2001 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new regime of plasma-enhanced chemical-vapor deposition (PECVD), referred to as "uninterrupted growth/annealing" method, has been proposed for preparation of high-quality hydrogenated amorphous silicon (a-Si:H) films. By using this regime, the deposition process no longer needs to be interrupted, as done in the chemical annealing or layer by layer deposition, while the growing surface is continuously subjected to an enhanced annealing treatment with atomic hydrogen created in the hydrogen-diluted reactant gas mixture at a relatively high plasma power. The intensity of the hydrogen plasma treatment is controlled at such a level that the deposition conditions of the resultant films approach the threshold for microcrystal formation. In addition, a low level of B-compensation is used to adjust the position of the Fermi level close to the midgap. Under these conditions, we find that the stability and optoelectronic properties of a-Si:H films have been significantly improved. (C) 2001 Elsevier Science B.V. All rights reserved.