958 resultados para STANDARD GIBBS ENERGIES OF TRANSFER
Resumo:
We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies
Resumo:
We have employed time-dependent local-spin-density theory to analyze the far-infrared transmission spectrum of InAs self-assembled nanoscopic rings recently reported [A. Lorke et al., Phys. Rev. Lett. (to be published)]. The overall agreement between theory and experiment is fairly good, which on the one hand confirms that the experimental peaks indeed reflect the ringlike structure of the sample, and on the other hand, asseses the suitability of the theoretical method to describe such nanostructures. The addition energies of one- and two-electron rings are also reported and compared with the corresponding capacitance spectra
Resumo:
We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring
Resumo:
The binding energies of two-dimensional clusters (puddles) of¿4He are calculated in the framework of the diffusion Monte Carlo method. The results are well fitted by a mass formula in powers of x=N-1/2, where N is the number of particles. The analysis of the mass formula allows for the extraction of the line tension, which turns out to be 0.121 K/Å. Sizes and density profiles of the puddles are also reported.
Resumo:
The role of effective mass and dielectric mismatches on chemical potentials and addition energies of many-electron multishell quantum dots (QDs) is explored within the framework of a recent extension of the spin density functional theory. It is shown that although the gross electronic density is located in the wells of these multishell QDs, taking position-dependent effective mass and dielectric constant into account can lead to the appearance of relevant differences in chemical potential and addition energies as compared to standard calculations in which the effective mass and the dielectric constant of the well is assumed for the whole multishell structure.
Resumo:
This thesis deals with preparing stoichiometric crystalline thin films of InSe and In2Se3 by elemental evapouration and their property investigation.In the present study three temperature( or Elemental evapouration) method is utilized for the deposition of crystalline thin films . The deposition mechanism using three temperature method deals’ with condensation of solids on heated surfaces when the critical supersaturation of the vapour phase exceeds a certain limit. The critical values of the incident flux are related to substrate temperature and the interfacial energies of the involved vapours. At a favorable presence of component atoms in the vapour phase these can react and condense onto a substrate even at a elevated temperature. In the studies conducted the most significant factor is the formation of single compositional film namely indium mono selenide in the In –se system of compounds .Further this work shows the feasibility of thin film photovoltaic junctions of the schottky barrier type
Resumo:
We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.
Resumo:
The heavy metal contamination in the environment may lead to circumstances like bioaccumulation and inturn biomagnification. Hence cheaper and effective technologies are needed to protect the precious natural resources and biological lives. A suitable technique is the one which meets the technical and environmental criteria for dealing with a particular remediation problem and should be site-specific due to spatial and climatic variations and it may not economically feasible everywhere. The search for newer technologies for the environmental therapy, involving the removal of toxic metals from wastewaters has directed attention to adsorption, based on metal binding capacities of various adsorbent materials. Therefore, the present study aim to identify and evaluate the most current mathematical formulations describing sorption processes. Although vast amount of research has been carried out in the area of metal removal by adsorption process using activated carbon few specific research data are available in different scientific institutions. The present work highlights the seasonal and spatial variations in the distribution of some selected heavy metals among various geochemical phases of Cochin Estuarine system and also looked into an environmental theraptic/remedial approach by adsorption technique using activated charcoal and chitosan, to reduce and thereby controlling metallic pollution. The thesis has been addressed in seven chapters with further subdivisions. The first chapter is introductory, stating the necessity of reducing or preventing water pollution due to the hazardous impact on environment and health of living organisms and drawing it from a careful review of literature relevant to the present study. It provides a constricted description about the study area, geology, and general hydrology and also bears the major objectives and scope of the present study.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
The electronic structure and properties of cerium oxides (CeO2 and Ce2O3) have been studied in the framework of the LDA+U and GGA(PW91)+U implementations of density functional theory. The dependence of selected observables of these materials on the effective U parameter has been investigated in detail. The examined properties include lattice constants, bulk moduli, density of states, and formation energies of CeO2 and Ce2O3. For CeO2, the LDA+U results are in better agreement with experiment than the GGA+U results whereas for the computationally more demanding Ce2O3 both approaches give comparable accuracy. Furthermore, as expected, Ce2O3 is much more sensitive to the choice of the U value. Generally, the PW91 functional provides an optimal agreement with experiment at lower U energies than LDA does. In order to achieve a balanced description of both kinds of materials, and also of nonstoichiometric CeO2¿x phases, an appropriate choice of U is suggested for LDA+U and GGA+U schemes. Nevertheless, an optimum value appears to be property dependent, especially for Ce2O3. Optimum U values are found to be, in general, larger than values determined previously in a self-consistent way.
Resumo:
The effect of the local environment on the energetic strain within small (SiO)N rings (with N=2,3) in silica materials is investigated via periodic model systems employing density functional calculations. Through comparison of the energies of various nonterminated systems containing small rings in strained and relatively unstrained environments, with alpha quartz, we demonstrate how small ring strain is affected by the nature of the embedding environment. We compare our findings with numerous previously reported calculations, often predicting significantly different small-ring strain energies, leading to a critical assessment of methods of calculating accurate localized ring energies. The results have relevance for estimates of the strain-induced response (e.g., chemical, photo, and radio) of small silica rings, and the propensity for them to form in bulk glasses, thin films, and nanoclusters.
Resumo:
Isoscalar collective modes in a relativistic meson-nucleon system are investigated in the framework of the time-dependent Thomas-Fermi method. The energies of the collective modes are determined by solving consistently the dispersion relations and the boundary conditions. The energy weighted sum rule satisfied by the models considered allows the identification of the giant resonances. The percentage of the energy weighted sum rule exhausted by the collective modes is in agreement with experimental data, but the agreement with the energy of the modes depends on the model considered.
Resumo:
In this paper the effectiveness of a novel method of computer assisted pedicle screw insertion was studied using testing of hypothesis procedure with a sample size of 48. Pattern recognition based on geometric features of markers on the drill has been performed on real time optical video obtained from orthogonally placed CCD cameras. The study reveals the exactness of the calculated position of the drill using navigation based on CT image of the vertebra and real time optical video of the drill. The significance value is 0.424 at 95% confidence level which indicates good precision with a standard mean error of only 0.00724. The virtual vision method is less hazardous to both patient and the surgeon
Resumo:
The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized. Hg_n clusters, we determine the size dependence of the bond character and the ionization potential I_p(n). For neutral Hg_n clusters we obtain a transition from van del Waals to covalent behaviour at the critical size n_c ~ 10-20 atoms. Results for I_p(Hg_n) with n \le 20 are in good agreement with experiments, and suggest that small Hg_n^+ clusters can be viewed as consisting of a positive trimer core Hg_3^+ surrounded by n - 3 polarized neutral atoms.
Resumo:
The Kr 4s-electron photoionization cross section as a function of the exciting-photon energy in the range between 30 eV and 90 eV was calculated using the configuration interaction (CI) technique in intermediate coupling. In the calculations the 4p spin-orbital interaction and corrections due to higher orders of perturbation theory (the so-called Coulomb interaction correlational decrease) were considered. Energies of Kr II states were calculated and agree with spectroscopic data within less than 10 meV. For some of the Kr II states new assignments were suggested on the basis of the largest component among the calculated CI wavefunctions.