919 resultados para SPRAY COATING
Resumo:
In recent years there has been a growing interest in developing news solutions for more ecologic and efficient construction, including natural, renewable and local materials, thus contributing in the search for more efficient, economic and environmentally friendly construction. Several authors have assessed the possibility of using various agricultural sub products or wastes, as part of the effort of the scientific community to find alternative and more ecologic construction materials. Corn cob is an agricultural waste from a very important worldwide crop. Natural glues are made from natural materials, non-mineral, that can be used as such or after some modifications to achieve the behaviour and performance required. Two examples of these natural glues are casein and wheat flour-based glues that were used in the present study. Boards with different compositions were manufactured, having as variables the type of glue, the dimension of the corn cob particles and the features of the pressing process. The tests boards were characterized with physical and mechanical tests, such as thermal conductivity (λ) with a ISOMET 2104 and 60 mm diameter contact probe, density (ρ) based on EN 1602:2013, surface hardness (SH) with a PCE Shore A durometer, surface resistance (SR) with a PROCEQ PT pendular sclerometer, bending behaviour (σ) based on EN 12089:2013, compression behaviour (σ10) based on EN 826:2013 and resilience (R) based on EN 1094-1:2008, with a Zwick Rowell bending equipment with 2 kN and 50 kN load cells (Fig. 1), dynamic modulus of elasticity (Ed) with a Zeus Resonance Meter equipment (Fig. 5) based on NP EN 14146:2006 and water vapour permeability (δ) based on EN 12086:2013. The various boards produced were characterized according to the tests and the ones with the best results were C8_c8 (casein glue, grain size 2,38-4,76 mm, cold pressing for 8 hours), C8_c4 (casein glue, grain size 2,38-4,76 mm, cold pressing for 4 hours), F8_h0.5 (wheat flour glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours), FEV8_h0.5 (wheat flour, egg white and vinegar glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours) and FEVH68_c4 (wheat flour, egg white, vinegar and 6 g of sodium hydroxide glue, grain size 2,38-4,76 mm, cold pressing for 4 hours). Taking into account the various boards produced and respective test results the type of glue and the pressure and pressing time are very important factors which strongly influence the final product. The results obtained confirmed the initial hypotheses that these boards have potential as a thermal and, eventually, acoustic insulation material, to use as coating or intermediate layer on walls, floors or false ceilings. This type of board has a high mechanical resistance when compared with traditional insulating materials.The integrity of these boards seems to be maintained even in higher humidity environments. However, due to biological susceptibility and sensitivity to water, they would be more adequate for application in dry interior conditions.
Resumo:
Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.
Resumo:
This thesis is one of the first reports of digital microfluidics on paper and the first in which the chip’s circuit was screen printed unto the paper. The use of the screen printing technique, being a low cost and fast method for electrodes deposition, makes the all chip processing much more aligned with the low cost choice of paper as a substrate. Functioning chips were developed that were capable of working at as low as 50 V, performing all the digital microfluidics operations: movement, dispensing, merging and splitting of the droplets. Silver ink electrodes were screen printed unto paper substrates, covered by Parylene-C (through vapor deposition) as dielectric and Teflon AF 1600 (through spin coating) as hydrophobic layer. The morphology of different paper substrates, silver inks (with different annealing conditions) and Parylene deposition conditions were studied by optical microscopy, AFM, SEM and 3D profilometry. Resolution tests for the printing process and electrical characterization of the silver electrodes were also made. As a showcase of the applications potential of these chips as a biosensing device, a colorimetric peroxidase detection test was successfully done on chip, using 200 nL to 350 nL droplets dispensed from 1 μL drops.
Resumo:
In the context of this dissertation several studies were developed resulting in submission and publication “Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones” to Journal of Cultural Heritage. (http://dx.doi.org/10.101 /j.culher.2014.10.004)
Resumo:
The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
Resumo:
Neste trabalho trabalho produziram-se micropartículas de polissacarídeos contendo um fármaco anticancerígeno, o 5-Fluorouracil, ou um anti-inflamatório, a Prednisolona, utilizando como matrizes encapsulantes o quitosano e o FucoPol. As micropartículas foram produzidas pelo método de secagem por atomização (spray-drying). Foram estudados vários reticulantes biocompatíveis: o ácido glutâmico; o ácido cítrico e a lisina. As micropartículas produzidas foram caracterizadas em termos de morfologia, tamanho, propriedades químicas, propriedades térmicas, cristalinidade e eficiência de encapsulamento recorrendo a técnicas como microscopia electrónica de varrimento (SEM), Espectro de infravermelho por transformada de Fourier (FT-IR), calorimetria diferencial de varrimento (DSC), difracção de raios-X (XRD) e espectroscopia UV. Os perfis de concentração foram obtidos realizando ensaios de libertação em dois meios distintos, em Suco Gástrico Simulado (pH=1,2) e Suco Intestinal Simulado (pH=6,8) e foram calculadas as velocidades de libertação para cada ensaio. Verificou-se que os ensaios com o fármaco modelo Prednisolona em matrizes de quitosano em meio ácido, pH=1,2, apresentam uma libertação mais lenta. Os reticulantes mais adequados para o quitosano são o ácido glutâmico para a libertação no estômago, a pH=1,2, e o ácido cítrico para a libertação no intestino, a pH=6,8. Em relação ao FucoPol, a concentração de reticulante mais adequada para ambos os meios de libertação revelou ser a de 50% em massa de lisina relativamente à massa de FucoPol.
Resumo:
The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.
Resumo:
This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.
Resumo:
Al-Cu alloys are widely used in the aerospace and automotive industries due to their high specific strength in some tempered conditions. However, due to poor corrosion and wear resistance, they are often anodized and/or painted. Plasma nitriding has been proposed as an alternative, though the developments in this technique are still in a recent stage for Al alloys. Electrical characterization techniques are well implemented NDTs in the industry because of good accuracy associated with lower cost, compared to other methods. Some, like eddy currents and 4-point probe techniques, are often used in coating inspection. The objective of this study was to perform Al nitriding at low temperatures to minimize the tempering initial condition damage and to assess the feasibility of eddy currents technique as a method for evaluating surface properties. The work developed can be divided in two stages. The first one was the process tuning, done at the Shibaura Institute of Technology, in Tokyo; and the second was the electrical characterization done in Faculdade de Ciências e Tecnologia, UNL. Low temperature nitriding of AA2011 alloy specimens was successfully achieved. Electrical conductivity results show that lift-off measurements by eddy currents testing can be related to surface properties.
Resumo:
Cancer is a well-known disease with a significant impact in society not only due to its incidence, more evident in more developed countries, but also due to the expenses related to medical treat-ments. Cancer research is considered an increasingly logical science with great potential for the development of new treatment options. Advances in nanomedicine have resulted in rapid devel-opment of nanomaterials with considerable potential in cancer diagnostics and treatment. The combination of diagnosis and treatment in a single nano-platform is named theranostic. In this PhD thesis a theranostic system for osteosarcoma was proposed, composed by a magnetic core, a polymeric coating, and a chemotherapeutic drug. The presence of a specific targeting agent, in this case a monoclonal antibody, provides high specificity to the proposed theranostic system. For the core of the proposed theranostic system, stable aqueous suspensions of superparamagnetic iron oxide nanoparticles with an average diameter of 9 nm were produced. Chitosan-based poly-meric nanoparticles with a hydrodynamic diameter around 150 nm were successfully produced. Incorporation of iron oxide nanoparticles into the polymeric ones increased their hydrodynamic diameter to at least 250 nm. A monoclonal antibody specific for a transmembranar protein (car-bonic anhydrase IX) present in solid tumors was developed by hybridoma technology. Functional hybridomas producing the desired monoclonal antibodies were obtained. The proposed theranostic system functionality was evaluated in separated parts of its components. Uncoated and coated iron oxide nanoparticles with chitosan-based polymers generated heat under the application of an external alternating magnetic field. Uncoated iron oxide nanoparticles sta-bilized with oleic acid were able to enhance contrast in magnetic resonance imaging. Drug deliv-ery studies were conducted in chitosan-based polymeric nanoparticles without and with the in-corporation of iron oxide nanoparticles, demonstrating to be an effective drug delivery platform for doxorubicin. The theranostic system proposed in this PhD thesis is very promising for cancer theranostic, demonstrating to be applicable in solid tumors such as osteosarcoma.
Resumo:
A soldadura é o processo mais utilizado na ligação de materiais. Os efeitos na saúde dos trabalhadores expostos a fumos de soldadura estão normalmente associados a danos pulmonares agudos e crónicos, mas também a outras condições médicas e doenças. O principal objectivo deste estudo foi correlacionar as emissões de macro e nanopartículas libertadas durante o processo de soldadura MIG/MAG de aços inoxidáveis com diferentes gases de protecção. Usando diferentes misturas gasosas utilizadas industrialmente com diferentes entregas térmicas, determinaram-se taxas de formação de fumos e áreas superficiais de nanopartículas com capaciade de deposição alveolar por volume pulmonar. Verificou-se como os diferentes modos de transferências e tipos de protecção gasosa, em particular, a percentagem de elementos activos na composição química do gás, afectam a quantidade de fumos gerados bem como a existência de nanopartículas com uma elevada capacidade de deposição alveolar. O modo de transferência por spray apresenta sempre valores superiores de área de superfície das partículas por volume pulmonar, ao contrário da taxa de formação de fumos. A mistura 82% Ar + 18% gera maiores emissões de nanopartículas bem como de fumos formados. A extracção na fonte e a regeneração do ar ambiente são a solução mais segura e eficiente de controlo das emissões de macro e nanopartículas em soldadura.
Resumo:
The weak fixation of biomaterials within the bone structure is one of the major reasons of implants failures. Calcium phosphate (CaP) coatings are used in bone tissue engineering to improve implant osseointegration by enhancing cellular adhesion, proliferation and differentiation, leading to a tight and stable junction between implant and host bone. It has also been observed that materials compatible with bone tissue either have a CaP coating or develop such a calcified surface upon implantation. Thus, the development of bioactive coatings becomes essential for further improvement of integration with the surrounding tissue. However, most of current applied CaP coatings methods (e.g. physical vapor deposition), cannot be applied to complex shapes and porous implants, provide poor structural control over the coating and prevent incorporation of bioactive organic compounds (e.g. antibiotics, growth factors) because of the used harsh processing conditions. Layer-by-layer (LbL) is a versatile technology that permits the building-up of multilayered polyelectrolyte films in mild conditions based on the alternate adsorption of cationic and anionic elements that can integrate bioactive compounds. As it is recognized in natureâ s biomineralization process the presence of an organic template to induce mineral deposition, this work investigate a ion based biomimetic method where all the process is based on LbL methodology made of weak natural-origin polyelectrolytes. A nanostructured multilayer component, with 5 or 10 bilayers, was produced initially using chitosan and chondroitin sulphate polyelectrolyte biopolymers, which possess similarities with the extracellular matrix and good biocompatibility. The multilayers are then rinsed with a sequential passing of solutions containing Ca2+ and PO43- ions. The formation of CaP over the polyelectrolyte multilayers was confirmed by QCM-D, SEM and EDX. The outcomes show that 10 polyelectrolyte bilayer condition behaved as a better site for initiating the formation of CaP as the precipitation occur at earlier stages than in 5 polyelectrolyte bilayers one. This denotes that higher number of bilayers could hold the CaP crystals more efficiently. This work achieved uniform coatings that can be applied to any surface with access to the liquid media in a low-temperature method, which potentiates the manufacture of effective bioactive biomaterials with great potential in orthopedic applications.
Resumo:
Cell encapsulation within hydrogel microspheres shows great promise in the field of tissue engineering and regenerative medicine (TERM). However, the assembling of microspheres as building blocks to produce complex tissues is a hard task because of their inability to place along length scales in space. We propose a proof-of-concept strategy to produce 3D constructs using cell encapsulated as building blocks by perfusion based LbL technique. This technique exploits the â bindingâ potential of multilayers apart from coating
Resumo:
The residual power of deltametrine FW (25 mg 1 .a/m2) was evaluated and compared to that of DDT (2 g i.a./m2) by means of biological tests. The different kinds of material used in constructing houses in Amazonia, such as: masonry, wood, and wattle and daub, were used. Data from logistic regression showed that the drop in mortality, the inclination of the curve in relation to time, was similar for the two insecticides in the first samples. The negative coeficient for the variable, months after application, confirmed a reduction in the activity of both insecticides. Wooden and wattle walls showed positive and negative coeficiencies respectively from the beginning. The wooden walls retained a residual effect but the wattle walls were shown to be the least indicated for the application of insecticides The experiments demonstrated a more prolonged residual effect for deltametrine as compared to DDT, and that insecticides work better on brick and cement and wooden walls than they do on wattle and daub constructions. For these reasons, it would be necessary to spray brick and cement walls every 8 months, wooden ones every 9 months and wattle constructions every 7 months to control the vectors of malaria.
Resumo:
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.