914 resultados para SEO (Search Engine Optimization)
Resumo:
For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.
Resumo:
Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study.
Resumo:
Three types of shop scheduling problems, the flow shop, the job shop and the open shop scheduling problems, have been widely studied in the literature. However, very few articles address the group shop scheduling problem introduced in 1997, which is a general formulation that covers the three above mentioned shop scheduling problems and the mixed shop scheduling problem. In this paper, we apply tabu search to the group shop scheduling problem and evaluate the performance of the algorithm on a set of benchmark problems. The computational results show that our tabu search algorithm is typically more efficient and faster than the other methods proposed in the literature. Furthermore, the proposed tabu search method has found some new best solutions of the benchmark instances.
Resumo:
In information retrieval (IR) research, more and more focus has been placed on optimizing a query language model by detecting and estimating the dependencies between the query and the observed terms occurring in the selected relevance feedback documents. In this paper, we propose a novel Aspect Language Modeling framework featuring term association acquisition, document segmentation, query decomposition, and an Aspect Model (AM) for parameter optimization. Through the proposed framework, we advance the theory and practice of applying high-order and context-sensitive term relationships to IR. We first decompose a query into subsets of query terms. Then we segment the relevance feedback documents into chunks using multiple sliding windows. Finally we discover the higher order term associations, that is, the terms in these chunks with high degree of association to the subsets of the query. In this process, we adopt an approach by combining the AM with the Association Rule (AR) mining. In our approach, the AM not only considers the subsets of a query as “hidden” states and estimates their prior distributions, but also evaluates the dependencies between the subsets of a query and the observed terms extracted from the chunks of feedback documents. The AR provides a reasonable initial estimation of the high-order term associations by discovering the associated rules from the document chunks. Experimental results on various TREC collections verify the effectiveness of our approach, which significantly outperforms a baseline language model and two state-of-the-art query language models namely the Relevance Model and the Information Flow model
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.
Resumo:
This paper demonstrates an experimental study that examines the accuracy of various information retrieval techniques for Web service discovery. The main goal of this research is to evaluate algorithms for semantic web service discovery. The evaluation is comprehensively benchmarked using more than 1,700 real-world WSDL documents from INEX 2010 Web Service Discovery Track dataset. For automatic search, we successfully use Latent Semantic Analysis and BM25 to perform Web service discovery. Moreover, we provide linking analysis which automatically links possible atomic Web services to meet the complex requirements of users. Our fusion engine recommends a final result to users. Our experiments show that linking analysis can improve the overall performance of Web service discovery. We also find that keyword-based search can quickly return results but it has limitation of understanding users’ goals.
Resumo:
A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM2.5) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10-40 % (by energy). With ethanol fumigation, NO and PM2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles; consequently, using a diesel oxidation catalyst will also assist in reducing particle number emissions.
Resumo:
This article sets the context for this special themed issue on the 'Korean digital wave' by considering the symbiotic relationship between digital technologies, their techniques and practices, their uses and the affordances they provide, and Korea's 'compressed modernity' and swift industrialisation. It underscores the importance of interrogating a range of groundbreaking developments and innovations within Korea's digital mediascapes, and its creative and cultural industries, in order to gain a complex understanding of one of Australia's most significant export markets and trading partners. Given the financial and political commitment in Australia to a high-speed broadband network that aims to stimulate economic and cultural activity, recent technological developments in Korea, and the double-edged role played by government policy in shaping the 'Korean digital wave', merit close attention from media and communications scholars.
Resumo:
This paper discusses commonly encountered diesel engine problems and the underlying combustion related faults. Also discussed are the methods used in previous studies to simulate diesel engine faults and the initial results of an experimental simulation of a common combustion related diesel engine fault, namely diesel engine misfire. This experimental fault simulation represents the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank-angle encoder and top-dead centre signals. Using these signals, it was possible to characterise the diesel engine in-cylinder pressure profiles and the effect of different combustion conditions on both vibration and acoustic emission signals.
Resumo:
Background This paper presents a novel approach to searching electronic medical records that is based on concept matching rather than keyword matching. Aim The concept-based approach is intended to overcome specific challenges we identified in searching medical records. Method Queries and documents were transformed from their term-based originals into medical concepts as defined by the SNOMED-CT ontology. Results Evaluation on a real-world collection of medical records showed our concept-based approach outperformed a keyword baseline by 25% in Mean Average Precision. Conclusion The concept-based approach provides a framework for further development of inference based search systems for dealing with medical data.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.